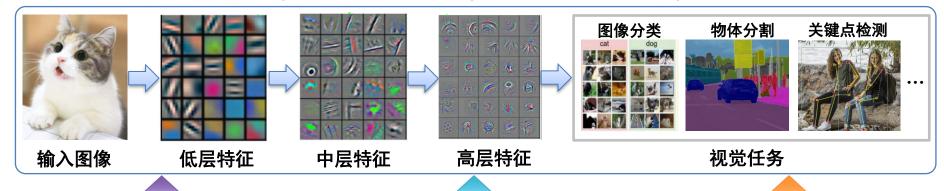
中国科学技术大学六系研究生课程《数字图像分析》

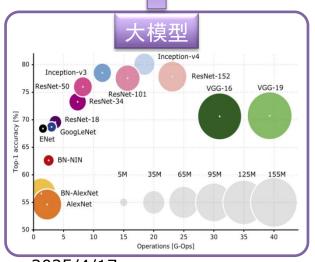
第四章: 图像表达-深度表征学习

授课老师: 李厚强, 胡洋, 周文罡, 李礼

研究背景

- □ 深度学习已成为学习视觉表征的主流范式
 - 将高维的输入信号转化为低维的特征表达,便于后续任务的使用
 - 深度模型可提取多层次、包含丰富语义信息的特征表达





2025/4/17

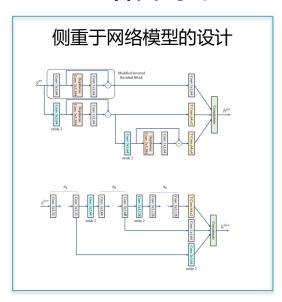
2

深度表征学习: 分类概览

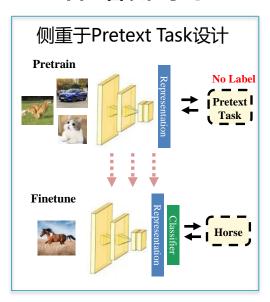
□ 深度表征学习

- 包括: **全监督学习**、**自监督学习**、半监督学习、弱监督学习等
- 此外还包含一类特殊的<mark>深度生成模型</mark>

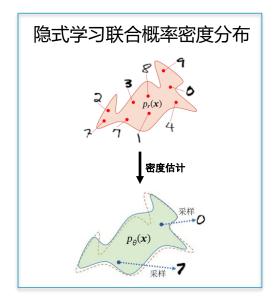
全监督表征学习



自监督表征学习



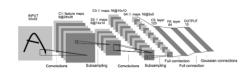
深度生成模型



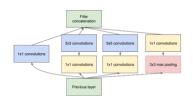
全监督表征学习I

□ 基于CNN的表征学习

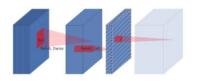
卷积神经网络结构设计探索历程



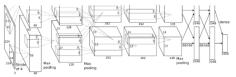
LeNet, 1998 早期利用CNN进行字符识别



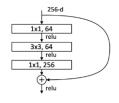
GoogLeNet, 2014 22层的多尺度CNN网络



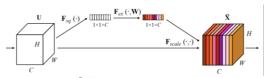
MobileNet, 2017 利用深度可分离卷积设计轻量化网络



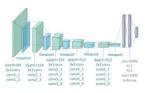
AlexNet, 2012 大规模图像分类任务中展现了CNN的实力



ResNet, 2015 引入short cut机制搭建152层CNN网络

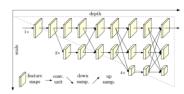


SENet, 2017 在网络设计中引入注意力机制



VGG, 2014 19层的CNN网络

DenseNet, 2017 引入dense connection搭建264层CNN网络



HRNet, 2019 在网络设计中保持<mark>高分辨率</mark>表征

全监督表征学习I

□ 基于Transformer的表征学习

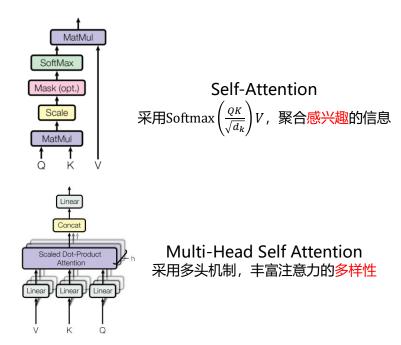
■ Transformer的核心技术: 注意力机制

什么是注意力机制?

视频动作识别

文本语义分析

如何建立注意力机制?

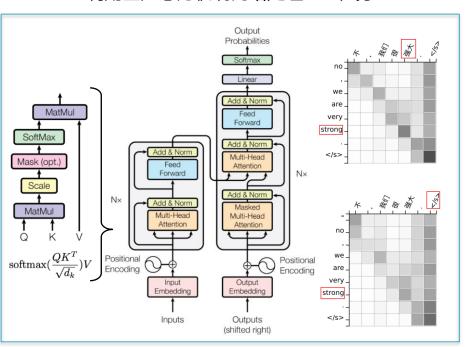


全监督表征学习I

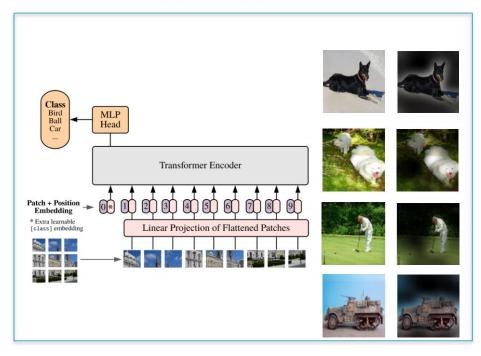
□ 基于Transformer的表征学习

■ 对文本和图像的表征学习统一为Transformer模型

Transformer, 2017 利用全注意力机制网络处理NLP任务

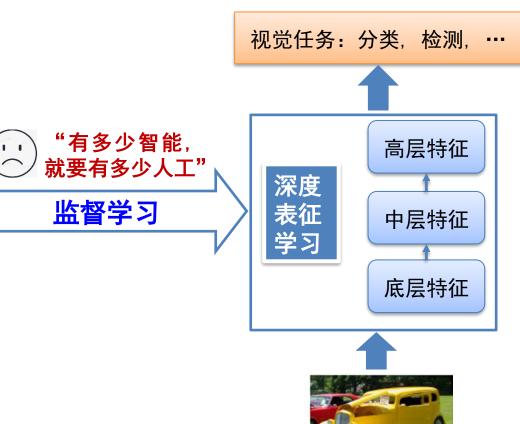


Vision Transformer, 2020 首次在大规模图像分类中使用Transformer结构



自监督表征学习

- □ 自监督学习的研究动机
 - 深度神经网络参数规模大,依赖大规模数据进行训练优化
 - 监督学习范式**依赖大规模标注数据,费时费力**



人工标注

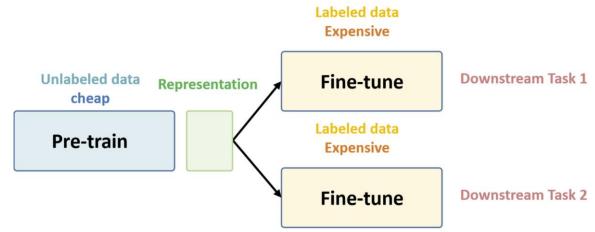
自监督表征学习

- □ 自监督学习的研究动机
 - 深度神经网络参数规模大,依赖大规模数据进行训练优化
 - 无标注的图象/视频数据在互联网上唾手可得

科学问题:如何设计代理任务,自监督地高效训练网络模型?

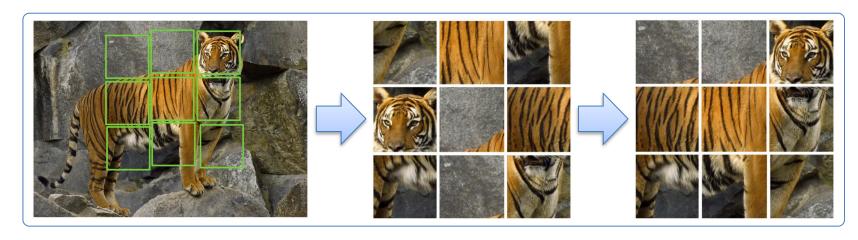
自监督表征学习

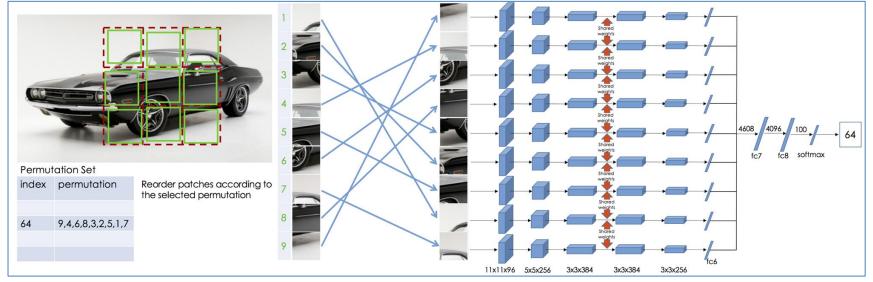
- □ 典型的视觉自监督表征学习
 - 基于图像变换的方法
 - ✓ Pretext任务常为图像变换:显式或者隐式地预测具体的变换形式
 - 基于对比学习的方法
 - ✓ 构建正负样本对,在语义空间缩小正样本对的距离,扩大负样本对的距离
 - 基于时序回路一致性的方法
 - ✓ 利用视频帧的前向和后向一致性约束,学习视觉表征
 - 基于生成学习的方法
 - ✓ 通过掩码重建,学习视觉表征



基于图像变换的自监督表征学习

- □ Jigsaw拼图重排 (ECCV 2016)
 - 通过求解拼图游戏,学习CNN上下文中对象的视觉空间表示



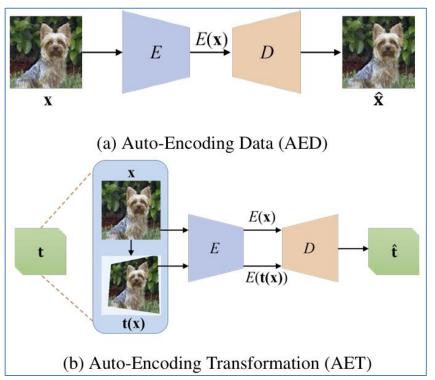


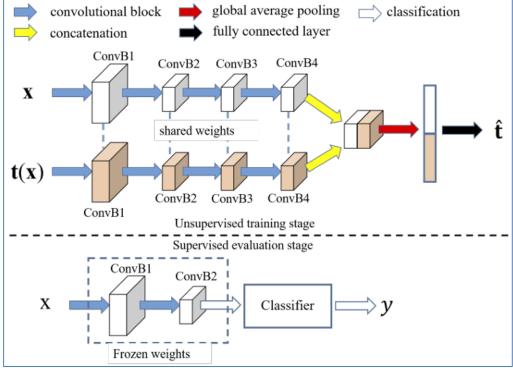
基于图像变换的自监督表征学习

- □ AET: 预测图像变换算子 (CVPR 2019)
 - 采样一些参数化算子来变换图像,通过训练自动编码器,学习原始 图像和转换图像的特征表示,从而预测这些参数化算子

$$\hat{\mathbf{t}} = D\left[E(\mathbf{x}), E(\mathbf{t}(\mathbf{x}))\right]$$

$$\min_{E,D} \mathbb{E}_{\mathbf{t} \sim \mathcal{T}, \mathbf{x} \sim \mathcal{X}} \ell(\mathbf{t}, \hat{\mathbf{t}})$$

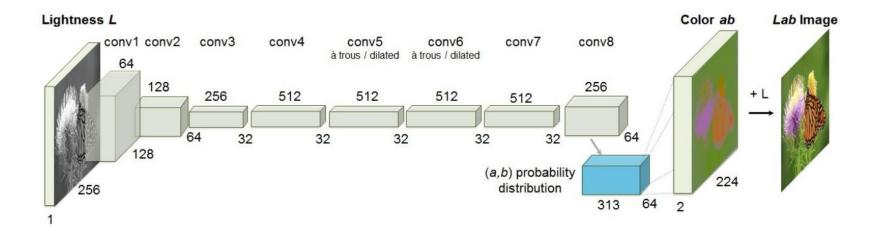




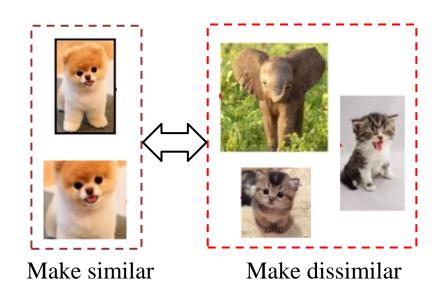
• L. Zhang, et al. AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transformations rather than Data. CVPR, 2019.

基于图像变换的自监督表征学习

- □ Colorization: 灰度图像上色
 - 将彩色图像灰度化,得到"灰度图像-彩色图像"的样本对
 - 构建CNN模型,学习从灰度图像到彩色图像的映射
 - ✓ L-a-b颜色模型:从L通道到a-b通道的映射



- □ 通过对比不同样本之间的相似性和差异性来学习数据的有效表征
- □ 不依赖于大量标注数据,而是通过构造正样本对(相似样 本)和负样本对(不相似样本)的方式来训练模型
 - 通过构建正负样本对,在语义空间里缩小正样本对之间的距离,扩 大负样本对之间的距离,从而使得编码器学习到对相似样本的一致 性表征

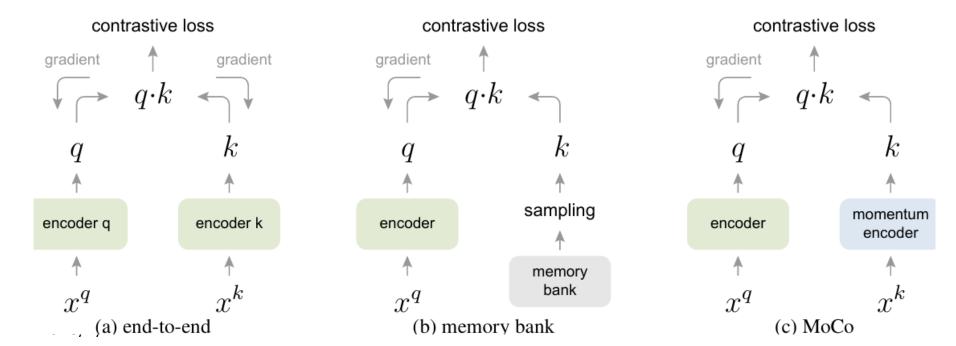


- □ 动量(MOCO, Momentum Contrast)对比学习
 - 对比损失: q与k+相似而与所有负样本不相似时,则对比损失越小

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i / \tau)}$$

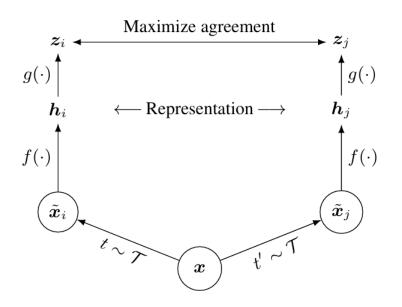
■ 动量编码器:对模型参数移动加权平均

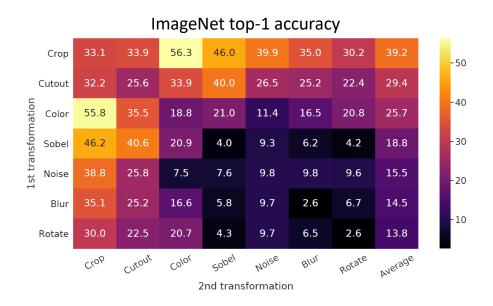
$$\theta_k \leftarrow m\theta_k + (1-m)\theta_q$$



SimCLR:

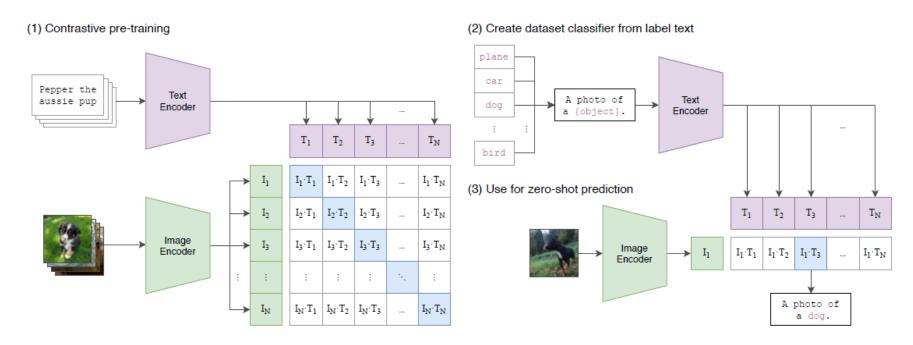
- 给定输入图像x,通过不同的数据增强方式T,得到两幅图像 \tilde{x}_i 和 \tilde{x}_j ✓ 三种方式:随机裁剪再resize到原来尺寸,随机色彩失真,随机高斯模糊
- 将 \tilde{x}_i 和 \tilde{x}_j 输入到共享参数的编码器 $f(\cdot)$,得到视觉表征 h_i 和 h_j
- 视觉表征 h_i 和 h_i 在经过project head得到 z_i 和 z_i ,做对比学习优化





• Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//ICML, 2020.

- CLIP: Contrastive Language Image Pre-training
 - 收集大规模(400M) "图像-文本句子描述",通过对比学习,训练文本编码器和图像编码器,对齐视觉表征和语言表征
 - 自然语言(句子)监督:提供了更广泛、更详细的描述,涵盖了更 多的视觉概念
 - 学习得到的文本/视觉编码器具有良好的零样本迁移能力

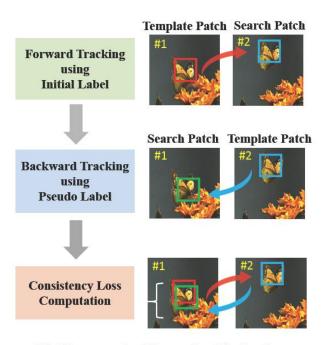


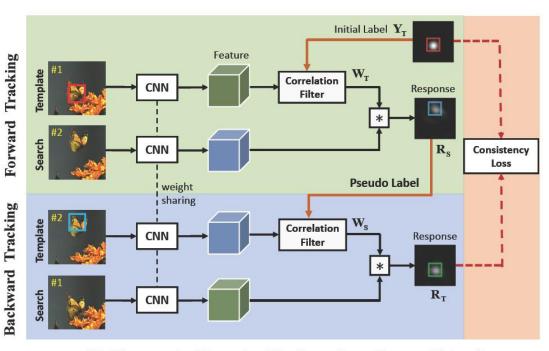
• Radford A, et al. Learning transferable visual models from natural language supervision[C]//ICML, 2021.

基于回路一致性的自监督表征学习

□ 双向目标跟踪的一致性优化学习

- 利用物体可双向跟踪的特点,随意生成初始标签进行前向跟踪和后向跟踪
- 提出了前向后向轨迹一致性的无监督训练,并扩展到多帧、多轨迹情况
- 无需人工标注,取得了媲美经典全监督学习方法的视频跟踪性能





(a) Unsupervised Learning Motivation

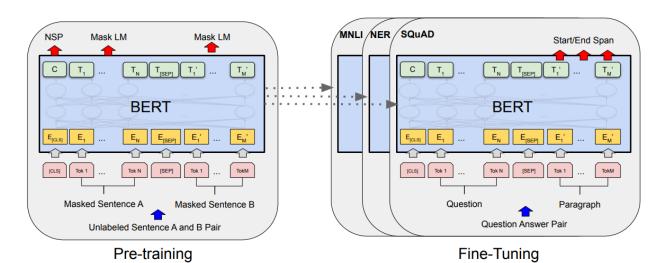
(b) Unsupervised Learning Pipeline using a Siamese Network

Ning Wang, Wengang Zhou, et al., "Unsupervised Deep Representation Learning for Real-Time Tracking," International Journal of Computer Vision, 2021.
2025/4/17

基于生成式的自监督表征学习

□ 基于遮罩建模的生成式方法

- 通常为对被遮罩输入标识的重建任务,使得网络从剩余标识中捕获 用于重构的上下文信息,进而最大化输入领域信息的条件概率分布
- BERT预训练
 - ✓ 掩码语言模型 (MLM)
 - ▶ 随机掩盖输入中的一些词元,预测被掩盖的词元
 - ✓ 下一句预测 (NSP): 判断两个句子是否连续, 学习句子间关系

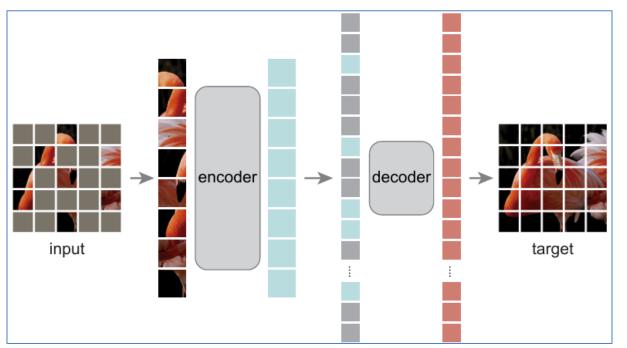


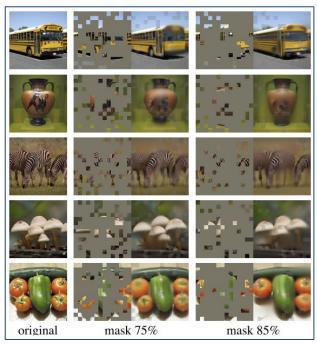
BERT: 自然语言处理领域典型方法

基于生成式的自监督表征学习

■ MAE: Masked autoencoders

- 随机mask掉图片中的一些patch,通过自编码器去重建缺失的patch
- 非对称编码-解码结构
 - ✓ 在编码器阶段,仅将未被mask掉的图片patch作为输入
 - ✓ 在解码器阶段,将编码器输出的隐变量和mask token共同作为输入,去 重建完成的图片





• He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]//CVPR, 2022.

基于生成式的自监督表征学习

MAE: Masked autoencoders

- 随机mask掉图片中的一些patch,通过自编码器去重建缺失的patch
- 非对称编码-解码结构
 - ✓ 在编码器阶段,仅将未被mask掉的图片patch作为输入
 - ✓ 在解码器阶段,将编码器输出的隐变量和mask token共同作为输入,去 重建完成的图片

