中国科学技术大学六系研究生课程《数字图像分析》

第4章: 深度学习基础

中国科学技术大学 电子工程与信息科学系

主讲教师: 李厚强 (lihq@ustc.edu.cn)

周文罡 (zhwg@ustc.edu.cn)

李礼(lill@ustc.edu.cn)

胡 洋 (eeyhu@ustc.edu.cn)

深度学习基础

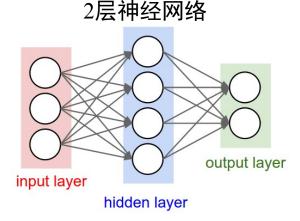
- □ 深度前馈网络
- □ 卷积神经网络
- □ 循环神经网络
- □ Transformer网络

深度学习基础

- □ 深度前馈网络
 - 基本结构
 - 非线性激活函数
 - 反向传播算法
 - 优化算法
- □ 卷积神经网络
- □ 循环神经网络
- □ Transformer网络

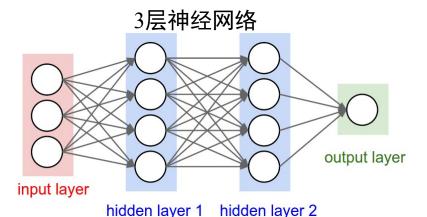
深度前馈网络

- □ 深度前馈网络(多层感知机)
 - 深度前馈网络由输入层,隐藏层,输出层组成
 - 深度前馈网络本质上是在学习函数映射
 - 假设输入 $x_i \in \mathbb{R}^{D_{in}}$,输出 $y_i \in \mathbb{R}^{D_{out}}$



$$g(\mathbf{x}, W_1, W_2) = f(W_2 f(W_1 \mathbf{x}))$$

 $W_1 \in \mathbb{R}^{H \times D_{in}}$
 $W_2 \in \mathbb{R}^{D_{out} \times H}$



$$g(\mathbf{x}, W_1, W_2, W_3) = f(W_3 f(W_2 f(W_1 \mathbf{x})))$$

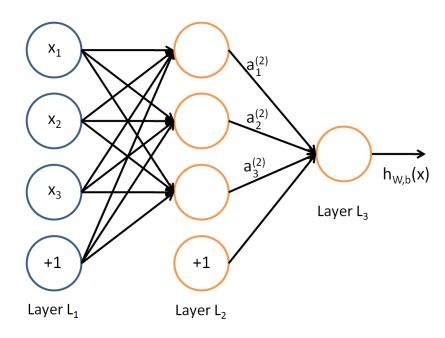
$$W_1 \in \mathbb{R}^{H_1 \times D_{in}}$$

$$W_2 \in \mathbb{R}^{H_2 \times H_1}$$

 $W_3 \in \mathbb{R}^{D_{out} \times H_2}$

前馈网络: 示例

□ 神经网络模型



 $f(\cdot)$: 激活函数(activation function)

 $a_i^{(l)}$: 第l层第i单元的输出值

 $z_i^{(l)}$: 第l层第i单元的输入加权和

$$a_1^{(2)} = f\left(z_1^{(2)}\right)$$

= $f(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)})$

$$a_2^{(2)} = f\left(z_2^{(2)}\right)$$

= $f(W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)})$

$$a_3^{(2)} = f\left(z_3^{(2)}\right)$$

= $f(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)})$

$$\begin{aligned} \mathbf{h}_{\mathbf{W},b}(\mathbf{x}) &= a_1^{(3)} = f(z_1^{(3)}) \\ &= f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)}) \end{aligned}$$

激活函数

- □ 激活函数作用
 - 引入非线性,增强网络的表达能力
- □ 激活函数的性质
 - 非线性,连续可导(允许少数点上不可导)
 - ✓ 可以用数值优化的方法学习网络参数
 - 激活函数及其导数尽可能简单
 - ✓ 有利于提高网络计算效率
 - 激活函数的导函数的值域在一个合适的区间内
 - ✓ 太大或太小可能影响训练的效率和稳定性

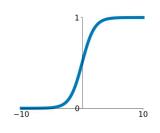
激活函数

□ 常见激活函数

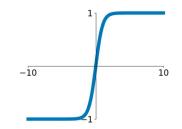
■ S型函数

Sigmoid

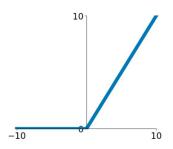
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

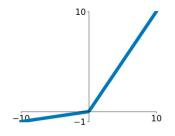


■ 斜坡函数



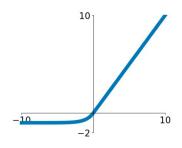
ReLU

 $\max(0, x)$



Leaky ReLU

 $\max(\beta x, x)$



$$\begin{cases} x & , & x \ge 0 \\ \alpha(e^x - 1), & x < 0 \end{cases}$$

激活函数

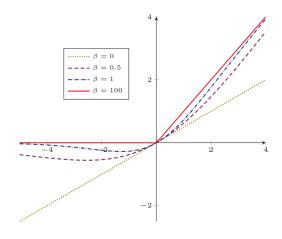
□ 常见激活函数

■ 复合函数

Swish(SiLU)

$$Swish(x) = x\sigma(\beta x)$$

• 一种自门控激活函数



GELU

$$GELU(x) = xP(X \le x)$$

- $P(X \le x)$ 是高斯分布的累积分布函数
- 由于 $P(X \le x)$ 是S型函数,可以用Sigmoid或Tanh函数近似

$$GELU(x) \approx x\sigma(1.702x)$$

GELU(x)
$$\approx 0.5x(1 + \tanh(\sqrt{\frac{2}{\pi}}(x + 0.044715x^3)))$$

万能近似定理

- □ 万能近似定理(universal approximation theorem)
- 一个前馈神经网络如果具有线性输出层和至少一层具有任何一种"挤压"性质的激活函数(例如sigmoid激活函数)的隐藏层,只要给予网络足够数量的隐藏单元,它可以近似任何一个有限维空间到另一个有限维空间的Borel可测函数。

(定义在 \mathbb{R}^n 的有界闭集上的任意连续函数是Borel可测的,因此可以用神经网络来近似)

训练前馈网络

□ 有监督学习

- 损失函数
 - ✓ 平方损失: $\frac{1}{2} \| \mathbf{h}_{\mathbf{W},b}(\mathbf{x}) y \|^2$
 - ✓ Hinge损失: $\sum_{j\neq y} \max(0, s_j s_y + 1)$
 - ✓ 交叉熵损失: $-\log\left(\frac{e^{sy}}{\sum_{i}e^{sj}}\right)$
- 给定训练样本集 $\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(m)}, y^{(m)})\}$

$$J(\mathbf{W}, b; \mathbf{x}, y) = \frac{1}{m} \sum_{i=1}^{m} J(\mathbf{W}, b; \mathbf{x}^{(i)}, y^{(i)}) + \frac{\lambda}{2} \sum_{l=1}^{n_l - 1} \sum_{i=1}^{H_l} \sum_{j=1}^{H_{l+1}} \left(W_{ji}^{(l)} \right)^2$$

公式中第一项为数据项,第二项为正则化项(也叫权重衰减weight decay 项),其目的是减小权重的幅度,防止过拟合。

□ 前向计算

- 参数(随机)初始化
- 进行前馈传导计算,利用前向传导公式,得到 $L_2, L_3, ..., L_{n_l}$ 的输出值

$$a_i^{(n_l)} = f\left(z_i^{(n_l)}\right)$$

■ 对于第 n_l 层(输出层)的每个输出单元i,由预测值 $h_{\mathbf{W},b}(\mathbf{x})$ 和标签y计算网络预测的误差

以平方误差为例
$$\frac{1}{2} \left\| y - f\left(z_i^{(n_l)}\right) \right\|^2$$

- □ 反向传播
 - 由后向前,逐层计算损失函数相对于该层输入的偏导数(误差 项)
 - 计算J对 $z_i^{(n_l)}$ 的偏导数

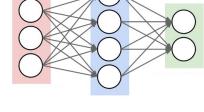
$$\delta_{i}^{(n_{l})} = \frac{\partial}{\partial z_{i}^{(n_{l})}} J(\mathbf{W}, b; \mathbf{x}, y)$$

$$= \frac{\partial}{\partial z_{i}^{(n_{l})}} \frac{1}{2} \left\| y - f\left(z_{i}^{(n_{l})}\right) \right\|^{2}$$
以平方误差为例
$$= -(y - a_{i}^{(n_{l})}) \cdot f'\left(z_{i}^{(n_{l})}\right)$$

反向传播

由求导的链式法则,第 $n_i - 1$ 层中的第i个节点的误差项可由第 n_i 层的误差项计算得到

$$\begin{split} \delta_{i}^{(n_{l}-1)} &= \frac{\partial}{\partial z_{i}^{(n_{l}-1)}} J(\mathbf{W}, b; \mathbf{x}, y) = \sum_{j} \frac{\partial}{\partial z_{j}^{(n_{l})}} J(\mathbf{W}, b; \mathbf{x}, y) \cdot \frac{\partial z_{j}^{(n_{l})}}{\partial z_{i}^{(n_{l}-1)}} \\ &= \sum_{j} \delta_{j}^{(n_{l})} \cdot \frac{\partial}{\partial z_{i}^{(n_{l}-1)}} \left[\sum_{k} W_{jk}^{(n_{l}-1)} f\left(z_{k}^{(n_{l}-1)}\right) \right] \\ &= \sum_{j} \delta_{j}^{(n_{l})} \cdot \frac{\partial}{\partial z_{i}^{(n_{l}-1)}} \left[W_{ji}^{(n_{l}-1)} f\left(z_{i}^{(n_{l}-1)}\right) \right] \\ &= \sum_{j} \delta_{j}^{(n_{l})} \cdot W_{ji}^{(n_{l}-1)} \cdot f'\left(z_{i}^{(n_{l}-1)}\right) \\ &= f'\left(z_{i}^{(n_{l}-1)}\right) \cdot \sum_{j} \left(W_{ji}^{(n_{l}-1)} \cdot \delta_{j}^{(n_{l})}\right) \end{split}$$



上式可以一般化地表示为: $\delta_i^{(l)} = (\sum_{i=1}^{s_{l+1}} W_{ii}^{(l)} \delta_i^{(l+1)}) f'(z_i^{(l)})$

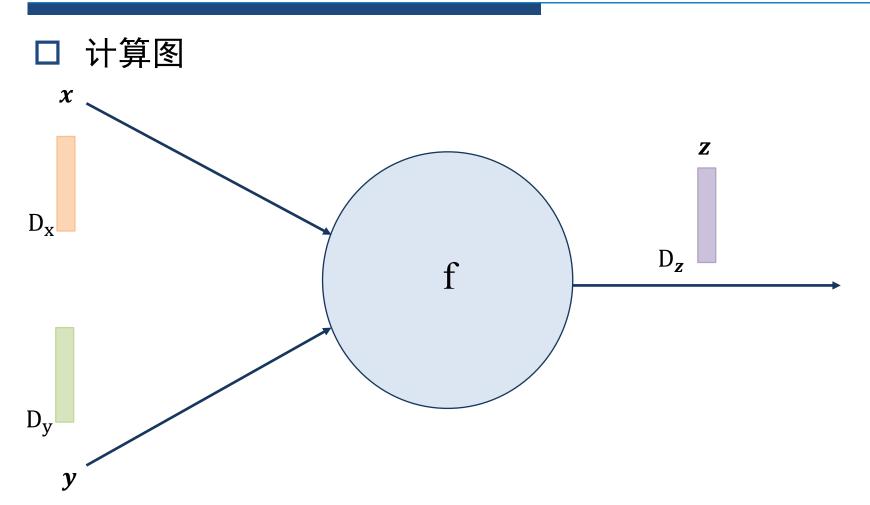
□ 反向传播

■ 根据误差计算网络参数的梯度

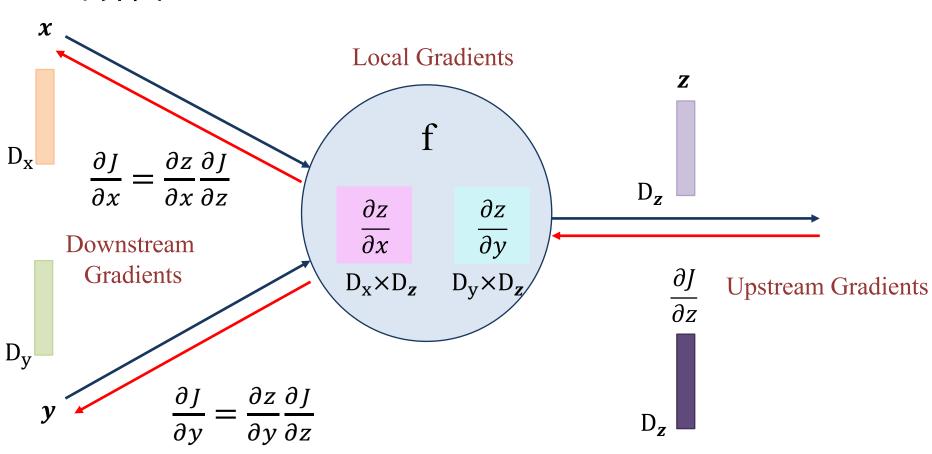
$$\frac{\partial}{\partial W_{ij}^{(l)}} J(\mathbf{W}, b; \mathbf{x}, y) = a_j^{(l)} \delta_i^{(l+1)}$$

$$\frac{\partial}{\partial b_i^{(l)}} J(\mathbf{W}, b; \mathbf{x}, y) = \delta_i^{(l+1)}$$

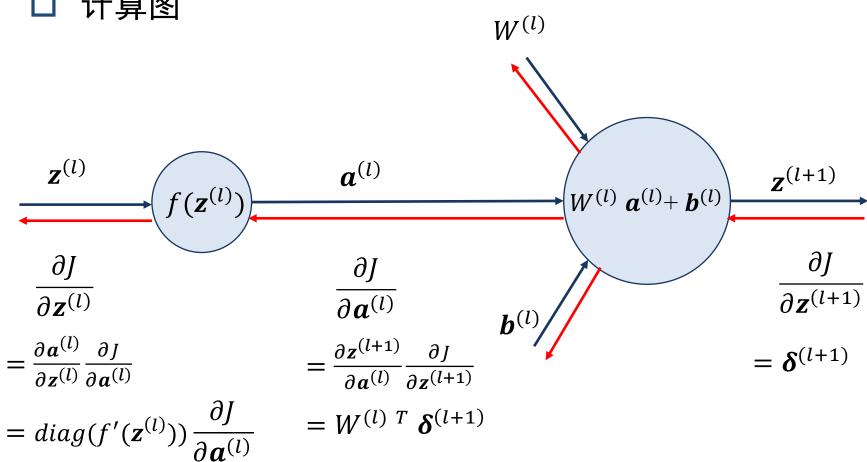
- 使用梯度下降进行参数更新
- □ 重复前向和后向传播过程,直到达到停止条件



□ 计算图



计算图



神经网络优化算法

- □ 梯度下降法
- □ 梯度下降法的改进
 - Momentum
 - AdaGrad
 - RMSProp
 - Adam

梯度下降法

□ 梯度的概念

- 梯度的定义
 - 梯度是一个矢量
 - 梯度对应的方向上的方向导数最大
 - 梯度的大小即为最大的方向导数的值

$$gradf(x_0, x_1, ..., x_n) = \left(\frac{\partial f}{\partial x_0}, ..., \frac{\partial f}{\partial x_j}, ..., \frac{\partial f}{\partial x_n}\right)$$

- 梯度下降法:函数沿梯度方向有最大的变化率,优化目标损失 函数时,根据负梯度方向进行
- 收敛性:在凸问题上可保证收敛到全局最优解,在非凸问题上可能收敛到局部最优解

梯度下降法

□ 梯度下降

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla_{\theta} \mathcal{L}(\theta_t)$$

- η为学习率
- □ 随机梯度下降

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla_{\theta} \mathcal{L}(\theta_t; x^i, y^i)$$

□ 小批量随机梯度下降

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla_{\theta} \mathcal{L}(\theta_t; x^{i:i+n}, y^{i:i+n})$$

Momentum

- 改善SGD方法中的高方差振荡导致的收敛不稳定问题
- 使用最近一段时间内梯度的加权平均值,加强当前更新时在相关方向的梯度下降,削弱在振荡方向的梯度下降。

$$v_t = \gamma \cdot v_{t-1} + \eta \cdot \nabla_{\theta} \mathcal{L}(\theta)$$
$$\theta = \theta - v_t$$

式中γ为上一步更新向量对当前步骤的影响,通常取0.9

当我们在之前一段时间一直趋向于从某个方向往下走,而当前时刻梯度告诉我们要进行很大的变化时,我们通常会有所迟疑,并根据之前的经验与当前时刻的情况作出调整。

AdaGrad

■ 自适应地调整每个参数的学习率

计算梯度: $g = \nabla_{\theta} \mathcal{L}(\theta)$

累计平方梯度: $r = r + g \odot g$

计算更新量: $\Delta \theta = -\frac{\eta}{\epsilon + \sqrt{r}} \odot g$

参数更新: $\theta = \theta + \Delta \theta$

优势: 不需要手工调整学习率

劣势:从训练开始时积累梯度 平方会导致有效学习率过早和 过量的减小(学习率过快接近0)

式中r为梯度累计变量,训练开始时初始化为0 ϵ 为一个极小的常数

□ RMSProp

■ 在计算累计平方梯度时加入关于历史信息的衰减系数(平方梯度的指数衰减平均值)

计算梯度:

$$g = \nabla_{\theta} \mathcal{L}(\theta)$$

平方梯度的指数衰减平均值:

$$r = \rho \cdot r + (1 - \rho) \cdot g \odot g$$

计算更新量:

$$\Delta\theta = -\frac{\eta}{\epsilon + \sqrt{r}} \odot g$$

参数更新:

$$\theta = \theta + \Delta \theta$$

Hinton建议历史信息衰减系数 ρ 取0.9,学习率取0.001

- Adam (Adaptive Moment Estimation)
 - 不仅记录平方梯度的指数衰减平均值,还记录先前梯度的指数 衰减平均值,在RMSProp的基础上加入了Momentum的思想

计算梯度:
$$g = \nabla_{\theta} \mathcal{L}(\theta)$$

计算指数衰减平均值:
$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$$

$$v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t \odot g_t$$

一阶矩和二阶矩估计:
$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}$$
 $\widehat{v}_t = \frac{v_t}{1 - \beta_2^t}$

参数更新:
$$\theta_{t+1} = \theta_t - \frac{\eta}{\epsilon + \sqrt{\hat{v}_t}} \hat{m}_t$$

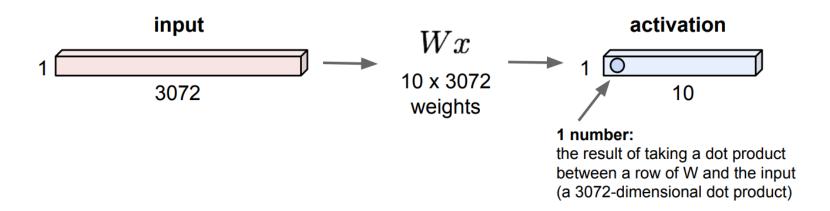
通常 β_1 取0.9, β_2 取0.99

深度学习基础

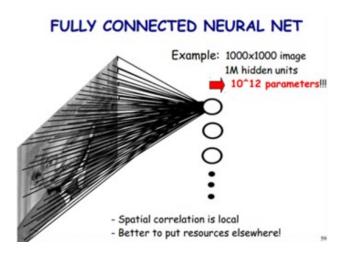
- □ 深度前馈网络
- □ 卷积神经网络
 - 卷积层
 - 汇聚层
 - 归一化层
 - 现代经典卷积网络
- □ 循环神经网络
- □ Transformer网络

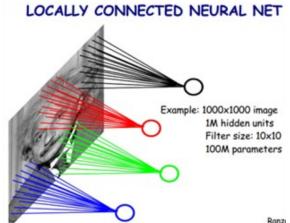
- □ 全连接层回顾
 - 在全连接下,输出层的每一个值和输入的所有值都有关系
 - 存在问题: 当输入层和输出层维度较高,则参数规模庞大

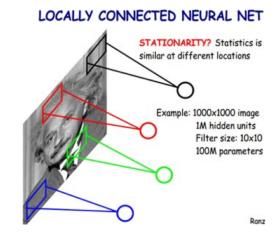
32x32x3 image -> stretch to 3072 x 1

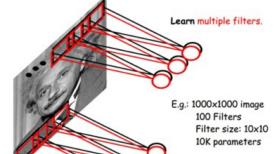


- □ 局部感受野(local receptive field)
- □ 权值共享(weight sharing)





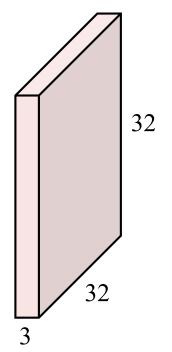




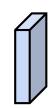
CONVOLUTIONAL NET

□ 卷积层

32x32x3 image

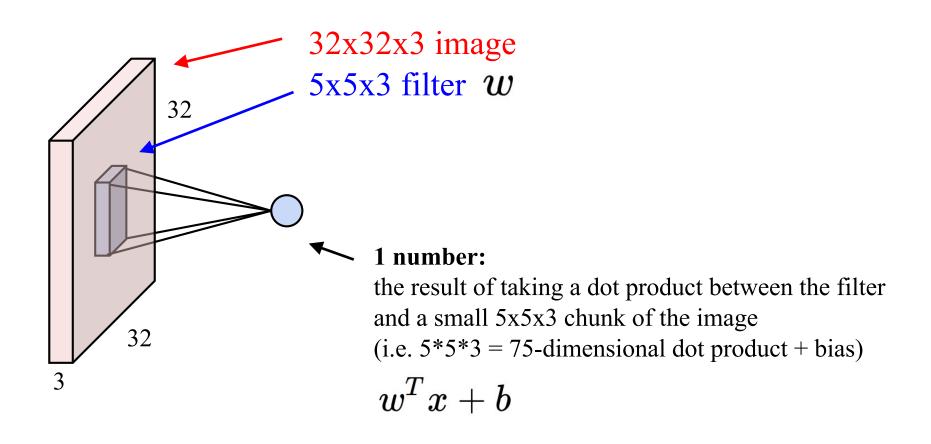


5x5x3 filter

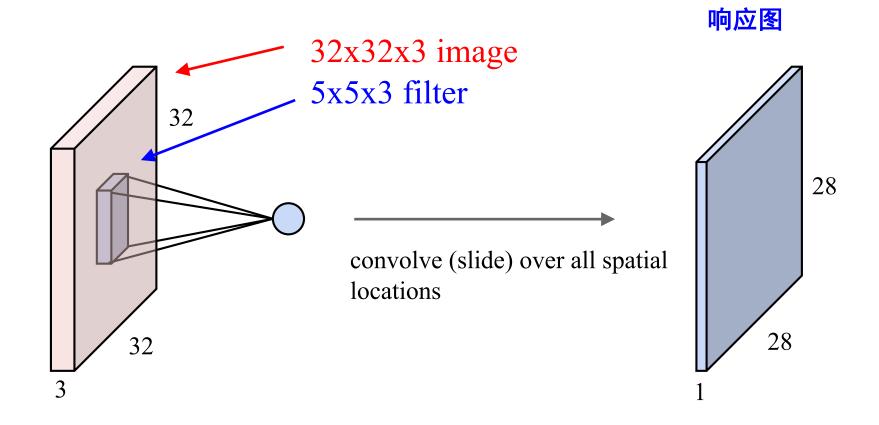


Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

□ 卷积层



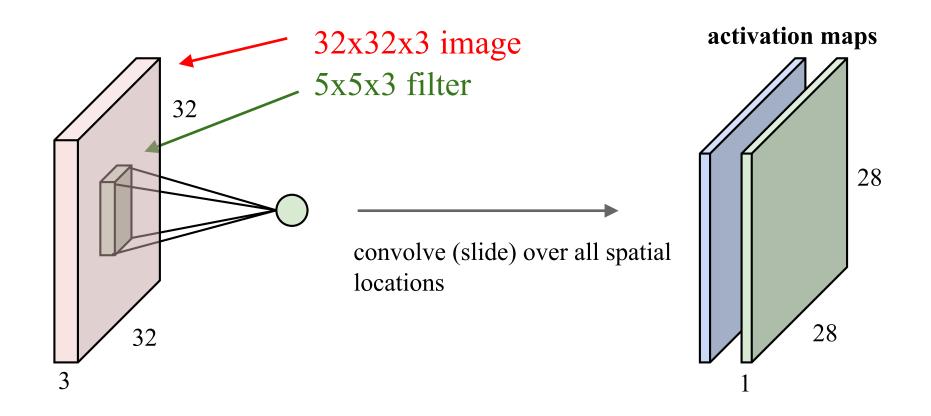
□ 卷积层



Translation Invariance!

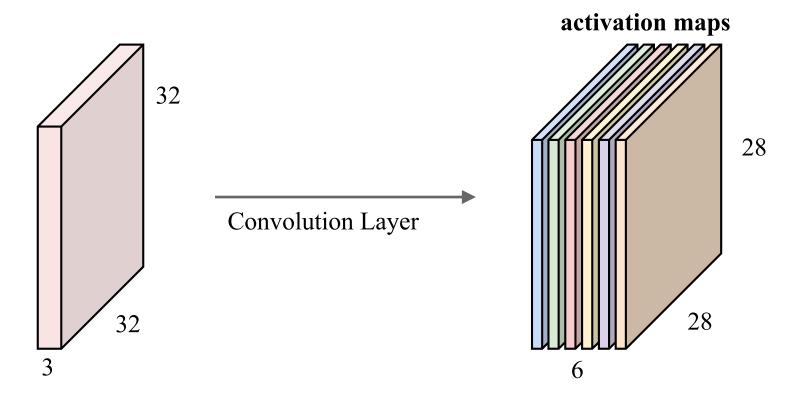
□ 卷积层

考虑第二个滤波器 (绿色)



□ 卷积层

如果我们有6个5x5的滤波器,则可以得到6个不同的响应图

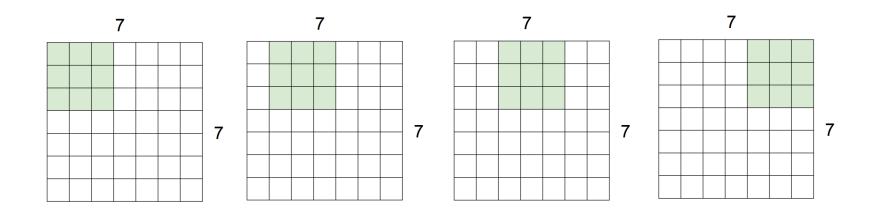


We stack these up to get a "new image" of size 28x28x6!

Number of parameters: F²CK and K biases

□ 卷积操作

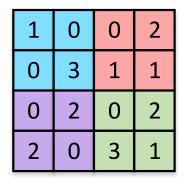
7x7 input (spatially) assume 3x3 filter

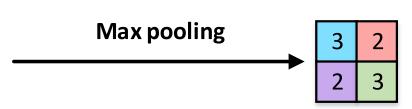


当stride为1,不做padding时,得到5×5的feature map

Output size: (N+2P-F) / stride + 1

□ 汇聚层(池化层)

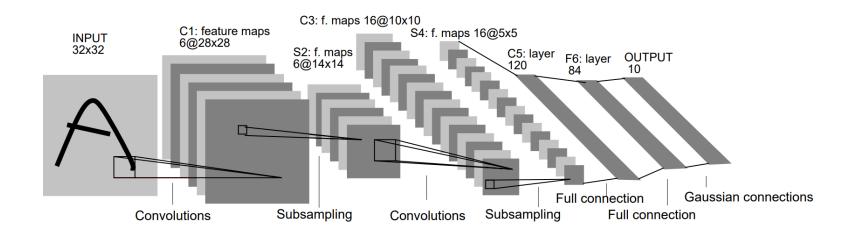




1	0	0	2
0	3	1	1
0	2	2	2
2	0	3	1

□ 实例: LeNet-5

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]



与现在常见的卷积神经网络结构不同,LeNet-5的下采样层不是用池化层实现,而是先将2×2的窗口中的4个输入相加,乘以一个可训练参数,再加上一个可训练偏置,输出的结果通过sigmoid激活

• Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition". In Proceedings of the IEEE, 86(11):2278–2324, 1998.

批量归一化

- 问题
 - 中间层输出数值的不稳定性,给深度神经网络的训练带 来困难
- 解决办法 利用小批量上的均值和标准差, 调整中间层输出
- 假设输入 $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j} \qquad \hat{x}_{i,j} = \frac{x_{i,j} - \mu_{j}}{\sqrt{\sigma_{j}^{2} + \varepsilon}}$$

$$\sigma_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_{j})^{2} \qquad y_{i,j} = \gamma_{j} \ \hat{x}_{i,j} + \beta_{j}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

$$y_{i,j} = \gamma_j \; \hat{x}_{i,j} + \beta_j$$

 γ 、 β 为可学习的参数

批量归一化

□ 全连接层的批量归一化

□ 卷积层的批量归一化

$$x: N \times D$$

$$y = \frac{(x - \mu)}{\sqrt{\sigma^2 + s}} \gamma + \beta$$

$$x: N \times C \times H \times W$$
归一化
$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sqrt{\sigma^2 + \varepsilon}} \gamma + \beta$$

层归一化

□ 全连接层的批量归一化

$$x: N \times D$$
归一化
$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

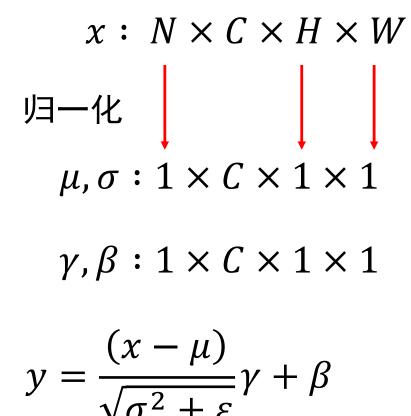
$$y = \frac{(x - \mu)}{\sqrt{\sigma^2 + \varepsilon}} \gamma + \beta$$

□ 层归一化 (RNN, Transformers) $x: N \times D$ 归一化 $\mu, \sigma: N \times 1$ $\gamma, \beta: 1 \times D$ $y = \frac{(x - \mu)}{\sqrt{\sigma^2 + \varepsilon}} \gamma + \beta$

实例归一化

□ 卷积层的批量归一化

□ 卷积层的实例归一化



$$x: N \times C \times H \times W$$
归一化
$$\mu, \sigma: N \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sqrt{\sigma^2 + \varepsilon}} \gamma + \beta$$

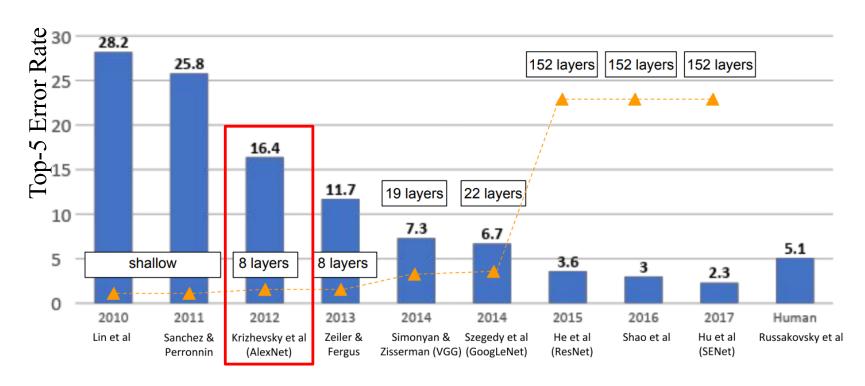
现代经典卷积神经网络

- □ 经典图像分类网络
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet
 - MobileNet

图像分类任务的巨大进展

- □ 随着深度卷积神经网络的发展,图像分类的准确率得到 了极大的提升
 - 核心因素:数据、算力、算法
 - 对人工设计特征造成的巨大冲击

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

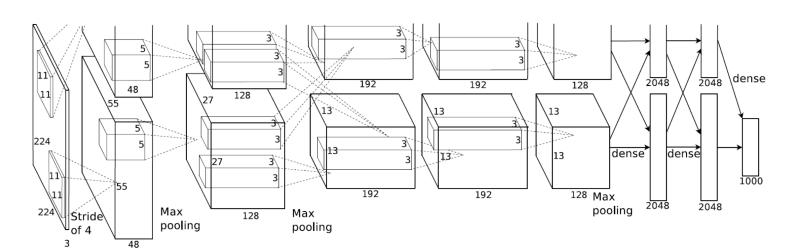


□ AlexNet

- 首次在ImageNet比赛中使用深度卷积神经网络
- 引入的一些技术被现代卷积神经网络设计一直沿用
 - ✓ ReLU
 - ✓ Data Augmentation
 - ✓ Dropout

Architecture:

CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8



• A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks". In NeurIPS, 2012.

□ AlexNet详细信息

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

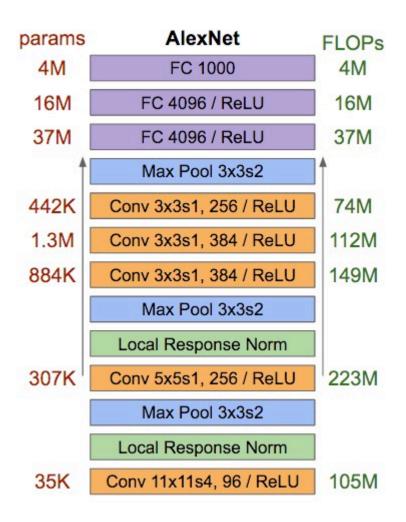
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

□ 参数规模与计算复杂度



□ AlexNet中使用的学习策略

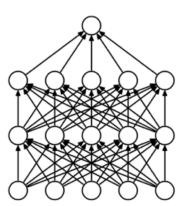
Weight decay

$$\tilde{E}(w) = E(w) + \frac{\lambda}{2} w^T w$$

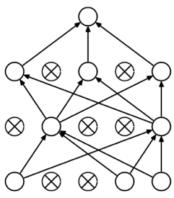
Data augmentation

目的:扩充训练样本库

方法:水平翻转,crop图中部分区域



(a) Standard Neural Net



(b) After applying dropout.

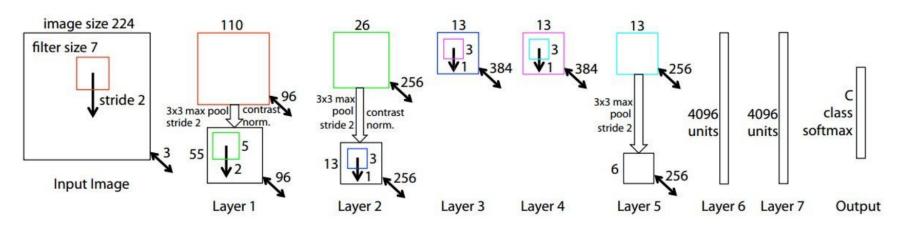
Dropout

目的: 防止过拟合, 相当于指数级倍网络的组合

方法: 在每次训练的迭代中, 只会激活部分神经元

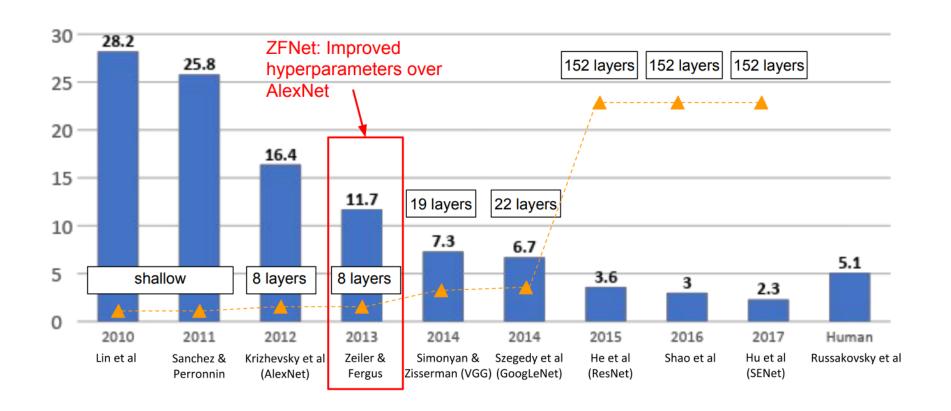
AlexNet网络结构改进

- □ AlexNet改进的主要方向
 - 更深:增加网络的层数
 - 更宽:增加每一级网络的卷积单元
- □ ZFNet: 微调AlexNet结构参数
 - 将AlexNet中第一个11×11, stride为4的卷积层, 换成 7×7, stride为2的卷积层
 - 将Conv3,4,5中的channel数增加到512,1024,512

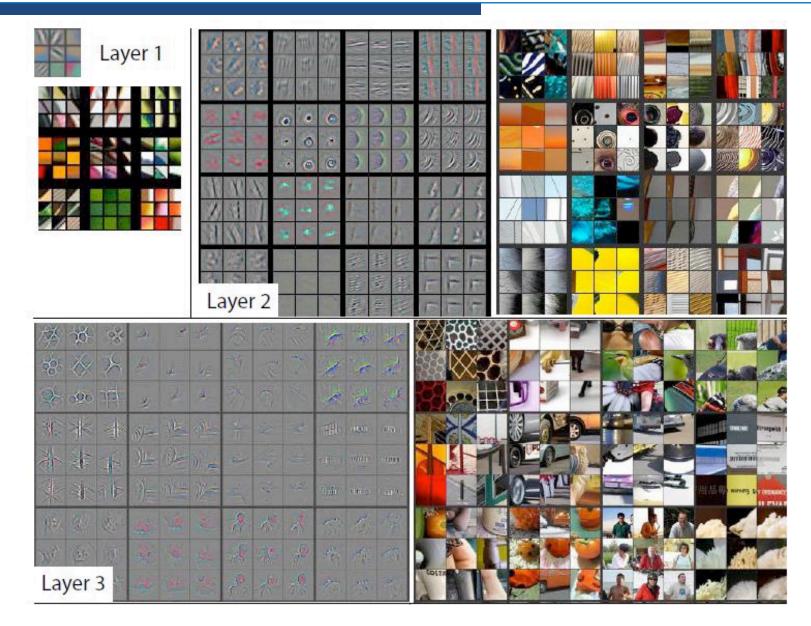


ZFNet

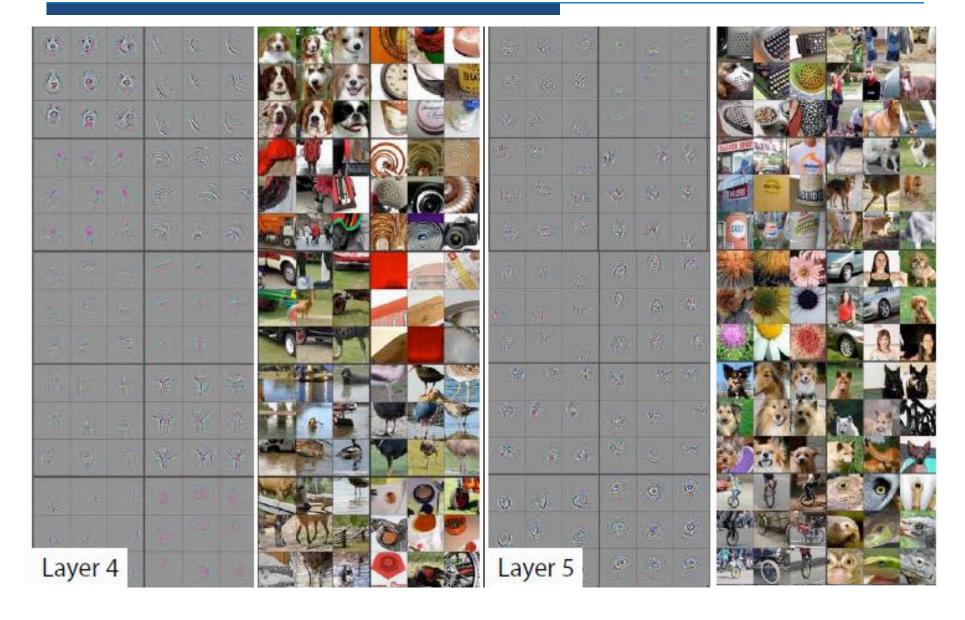
□ 超参数的改进在效果上得到了明显的体现



卷积神经网络特征可视化



卷积神经网络特征可视化



VGGNet

- □ 主要思想
 - 更小的卷积核
 - 更深的网络结构
- □ 与AlexNet的差异
 - 从8层变为16-19层
 - 卷积层大小均为3×3, stride均为1
 - 下采样用2×2的 max pooling

Softmax		
FC 1000		
FC 4096		
FC 4096		
Pool		
3x3 conv, 256		
3x3 conv, 384		
Pool		
3x3 conv, 384		
Pool		
5x5 conv, 256		
11x11 conv, 96		
Input		
AlexNet		

	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

• K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition". In ICLR, 2015.

VGGNet

- □ 为什么使用更小的卷积层
 - 感受野的等效性
 - ✓ 3个stride为1的3×3的卷积层对应的感受野,等效于1个7×7大小的卷积层
 - 等效感受野的情况下更少的参数(假设输入和输出的channel 数量均为1)
 - ✓ 3个3×3的卷积层的参数量: 3×3² = 27
 - ✓ 1个7×7的卷积层的参数量: 1×7² = 49
 - 更深的结构与更多的非线性激活层带来更好的特征表达的能力

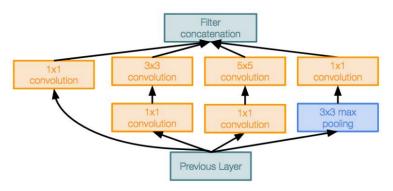
VGGNet

□ VGGNet的各种变种(D和E较为常用)

ConvNet Configuration					
A	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2)	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
	FC-4096				
	FC-1000				
		soft	-max		

GoogLeNet

- □ 更深的网络结构,更高的计算效率
 - 有22层,远深于AlexNet
 - Inception module (network within a network)
 - ✓ 不同大小的卷积层和池化层使inception结构具备不同的感受野



Inception module

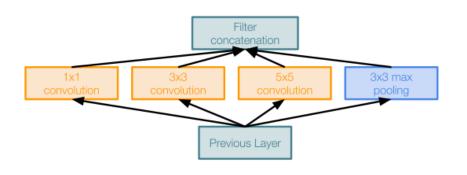
■ 没有全连接层,网络参数总量比AlexNet小12倍

GoogLeNet, VGGNet, AlexNet的对比让大家意识到, 网络的学习能力不是主要取决于参数的多少, 而是网络的深度

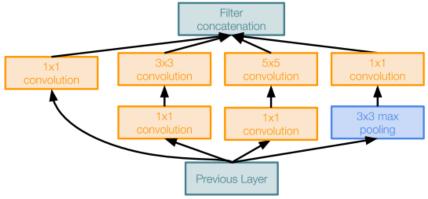
• C. Szegedy, et al., "Going deeper with convolutions". In CVPR, 2015.

GoogLeNet

- □ Inception module中的1×1卷积与bottleneck
 - 直接使用下面左图的结构会带了大量的计算量
 - Inception module的实际实现中,先通过1×1卷积进行降维, 再通过不同感受野的卷积核,并把结果拼接到一起
 - 这样子先通过降维进行操作,再还原回原来维度的结构我们称 为bottleneck



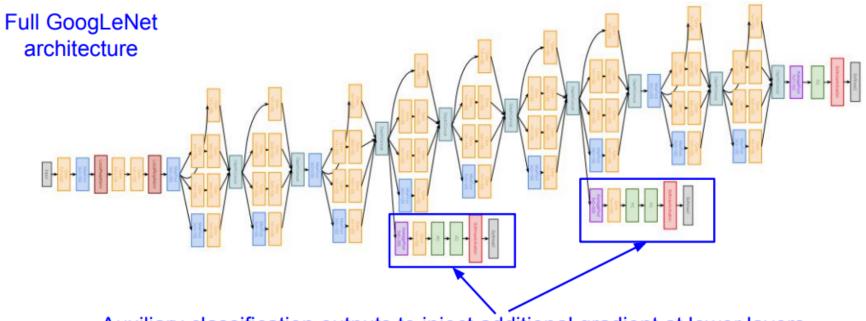
Naive Inception module



Inception module with dimension reduction

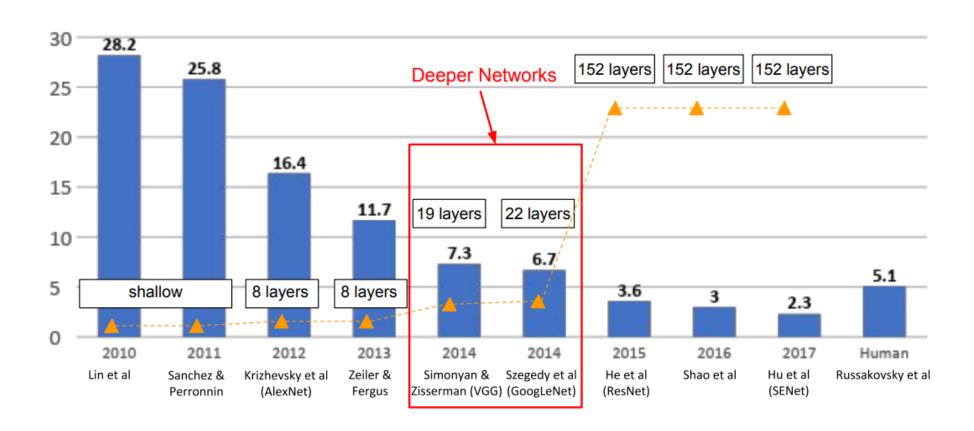
GoogLeNet

- Auxiliary classification head
 - 网络结构太深造成底层难以得到有效的训练,通过加入 auxiliary classification head缓解这个问题



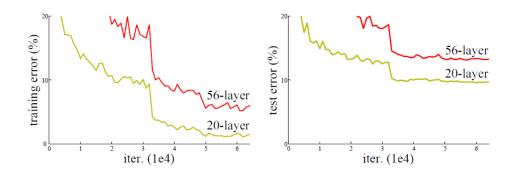
Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

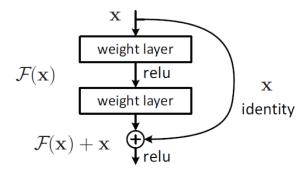
VGGNet与GoogLeNet的性能



Motivation

- Simply stacking more layers leads to higher training error
- Not all systems are similarly easy to optimize
- It is easier to optimize the residual mapping than to optimize the original, unreferenced mapping.



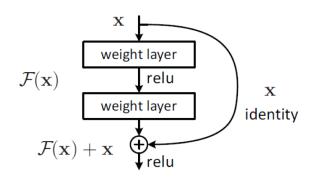


$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$
$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

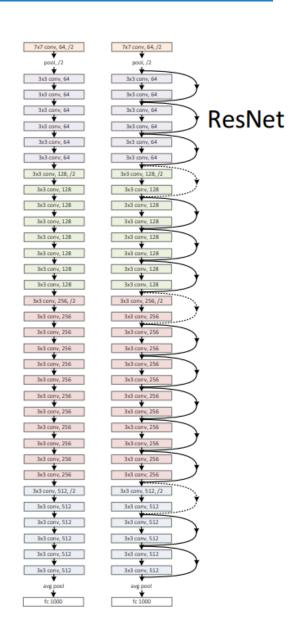
 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition". In CVPR, 2016.

- □ Plain net 与 ResNet
 - ResNet整体结构非常简洁
 - 在不同层之间加入 "shortcut"

plain net



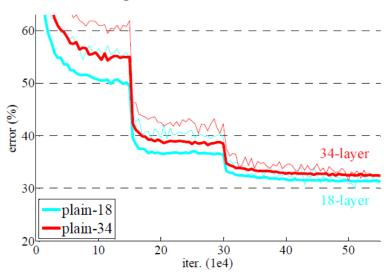
- 除stem cell(7×7卷积)外均 采用3×3卷积层
- 每当特征的空间分辨率减半时, filter的数量翻倍



□ ResNet不同深度的网络结构

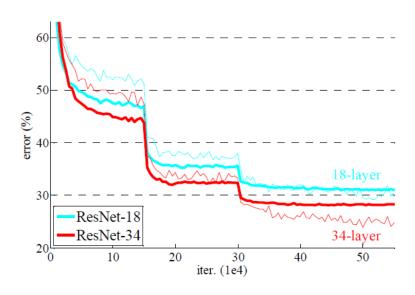
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
			3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLO	OPs	1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9	

□ 在ImageNet上的训练过程



Error rates on ImageNet validation

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

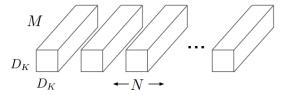


Error rates (%) of ensembles

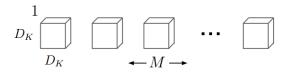
method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

MobileNet

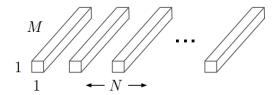
- ☐ Goal: efficiently trade off between latency and accuracy
 - Build very small, low latency models that can be easily matched to the design requirements for mobile and embedded vision applications
- □ Depthwise Separable Convolution



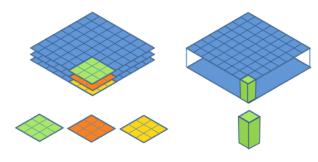
(a) Standard Convolution Filters



(b) Depthwise Convolutional Filters



(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution



Depthwise Convolutional Filters

Pointwise Convolutional Filters

Figure 2. Depthwise separable convolution.

$$\begin{split} \frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F} \\ = & \frac{1}{N} + \frac{1}{D_K^2} \end{split}$$

MobileNet

Architecture

Table 1. MobileNet Body Architecture

Tuble 1. Mobile (ct Body 1 Heintecture				
Type / Stride	Filter Shape	Input Size		
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$		
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$		
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$		
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$		
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$		
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1\times1\times128\times128$	$56 \times 56 \times 128$		
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$		
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1\times1\times256\times256$	$28 \times 28 \times 256$		
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1\times1\times256\times512$	$14 \times 14 \times 256$		
$5 \times \text{Conv dw / s1}$	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$		
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$		
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$		
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$		
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$		
FC/s1	1024×1000	$1 \times 1 \times 1024$		
Softmax / s1	Classifier	$1 \times 1 \times 1000$		

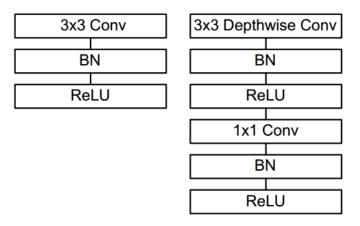


Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

MobileNet

Performance

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

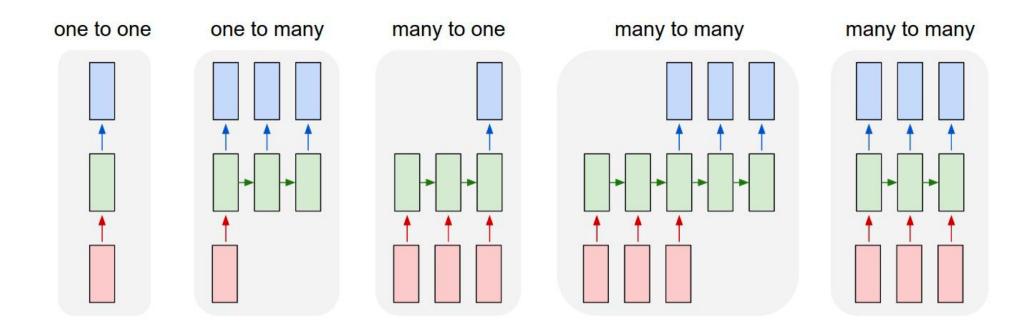
Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60

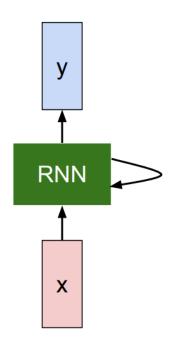
深度学习基础

- □ 深度前馈网络
- □ 卷积神经网络
- □ 循环神经网络
 - RNN
 - LSTM
 - GRU
- □ Transformer网络

□ 序列处理



- □ Recurrent neural network (RNN)
 - 输入 $\mathbf{x} = \{x_1, x_2, \dots, x_N\}$ 是一个序列
 - RNN递归地处理输入信号

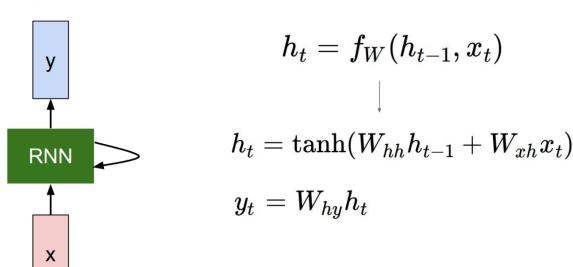


$$h_t = f_W(h_{t-1}, x_t)$$
 new state \int old state input vector at some time step some function with parameters W

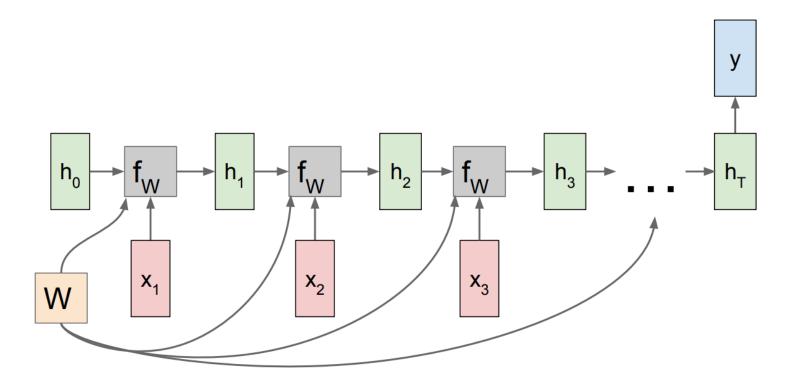
$$y_t = f_{W_{hy}}(h_t)$$
 output new state another function with parameters W_0

Vanilla RNN

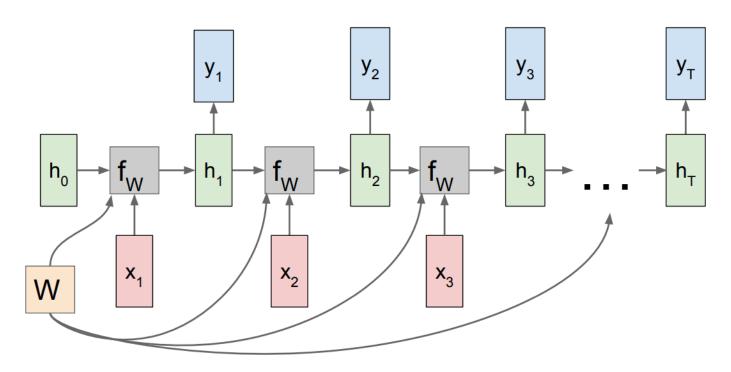
- RNN的一种最简单的形式,具有单个隐藏单元
- 存在的问题
 - ✓ 梯度消失和梯度爆炸
 - > RNN的权值矩阵循环相乘导致的
 - ✓ 长期依赖
 - 之前比较长的时间片的特征被覆盖/遗忘
 - ✓ 难并行



- □ Vanilla RNN的计算图
 - 序列输入,单个输出的形式

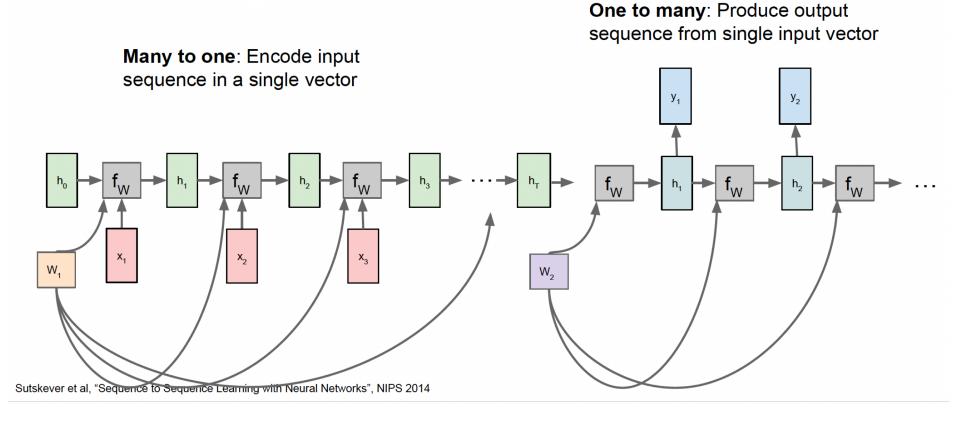


- □ Vanilla RNN的计算图
 - 序列输入,序列输出的形式

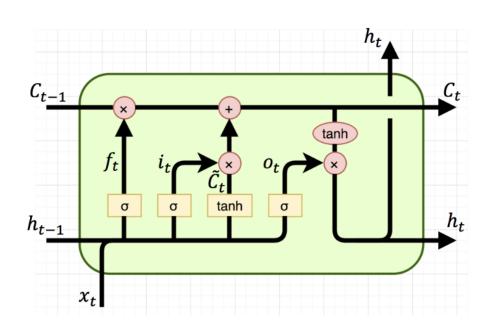


网络参数W在每个时刻都是共享的

- □ Sequence to Sequence:
 - Many-to-one + One-to-many



- Variants of RNN: LSTM
 - 可以解决长序列训练过程中的梯度消失和梯度爆炸问题,并缓 解长时依赖问题
 - Cell state (单元状态): 用于"记忆"当前的状态,上面包含记忆的删除、更新等
 - 遗忘门 f_t ,输入门 i_t ,输出门 o_t



$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

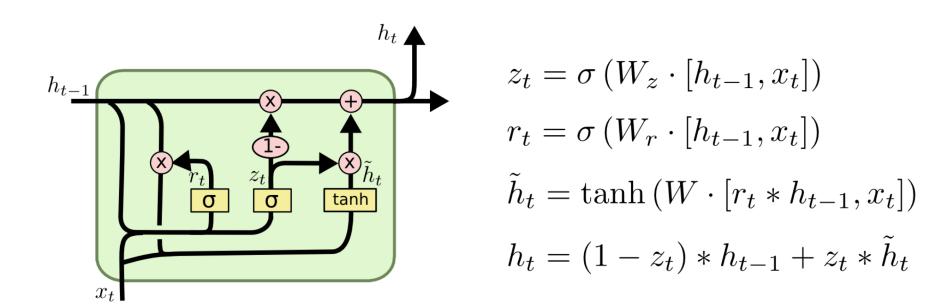
$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$$

$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t$$

$$h_t = o_t \odot \tanh(C_t)$$

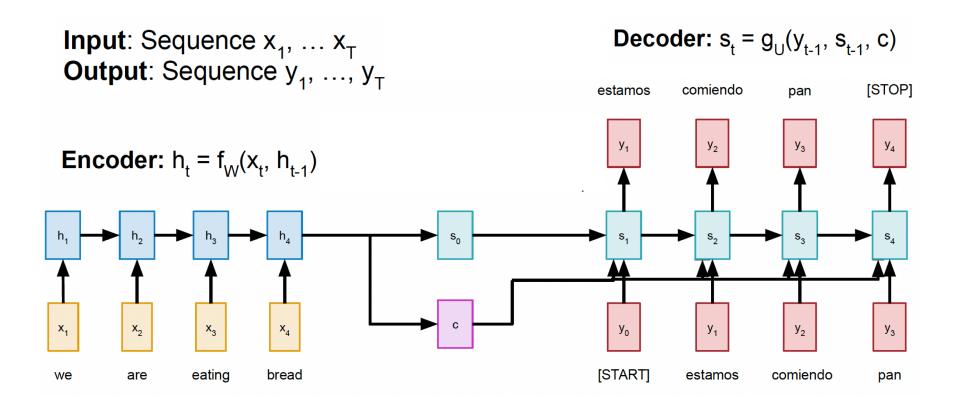
Variants of RNN: GRU



深度学习基础

- □ 深度前馈网络
- □ 卷积神经网络
- □ 循环神经网络
- □ Transformer网络
 - RNN+注意力
 - 注意力机制
 - Transformer

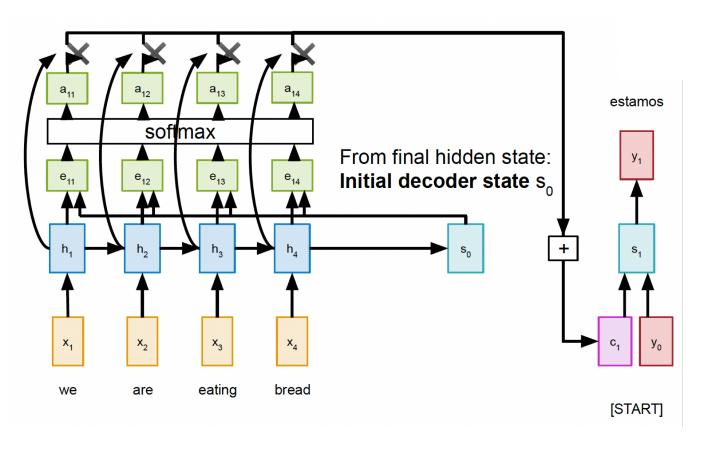
基于RNN的序列到序列模型



问题:输入序列的信息被压缩到单个向量

RNN+注意力

□ 引入注意力机制



- 1. 计算对齐分数
 (alignment scores) $e_{t,i} = f_{\text{attn}}(s_{i-1}, h_i)$
- 2. 归一化得到注意力权值(attention weights)

$$0 < a_{t,i} < 1,$$

$$\sum_{i} a_{t,i} = 1$$

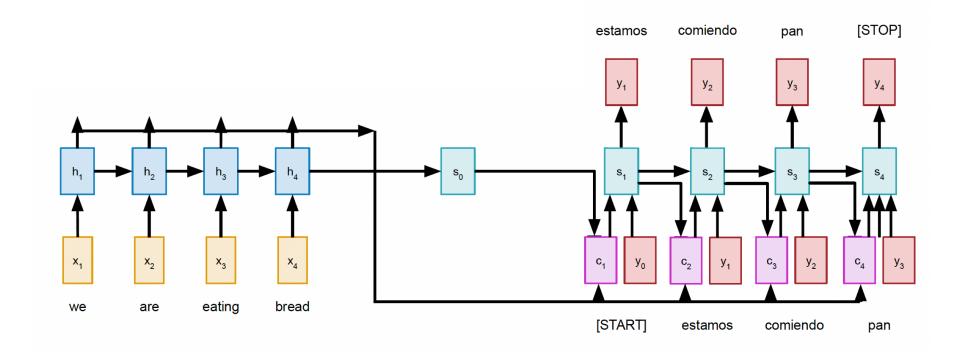
3. 计算上下文向量 $c_t = \sum_i a_{t,i} h_i$

4. 更新
$$s_t$$
 $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

• Dzmitry Bahdanau, et al. "Neural machine translation by jointly learning to align and translate". In ICLR 2015.

RNN+注意力

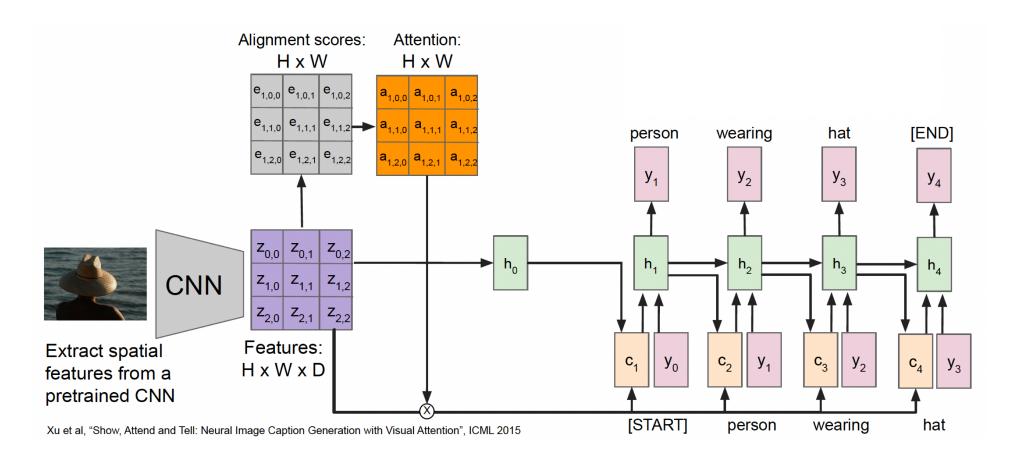
- □ 引入注意力机制
 - 解码器每一步使用不同的上下文向量
 - 不同时刻关注输入序列的不同部分



• Dzmitry Bahdanau, et al. "Neural machine translation by jointly learning to align and translate". In ICLR 2015.

RNN+注意力

□ Image Captioning



Xu et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention". In ICML, 2015.

注意力机制

□ 注意力机制

Q

3

注意力模块在计算的时候需要用到矩阵Q(查询), K(键值), V(值)

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

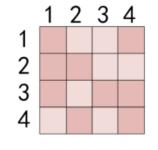
 d_k 是Q,K矩阵的列数,即向量维度

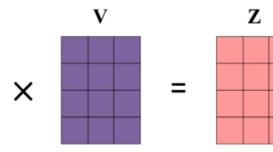
Q、K相似性矩阵计算

1 2 3 4 X

相似性矩阵归一化

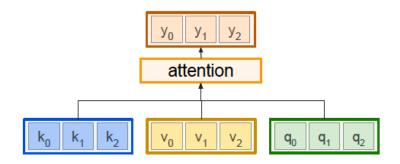
通过相似性矩阵对 V 加权求和

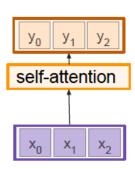




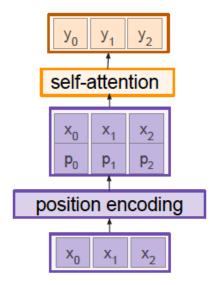
注意力机制

□ 自注意力(Self Attention)

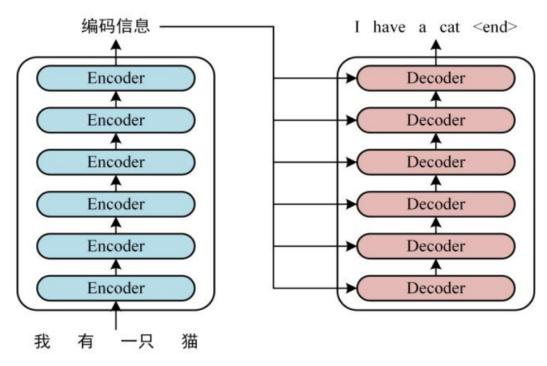




□ 位置编码

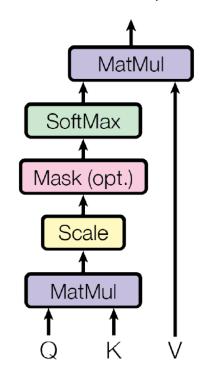


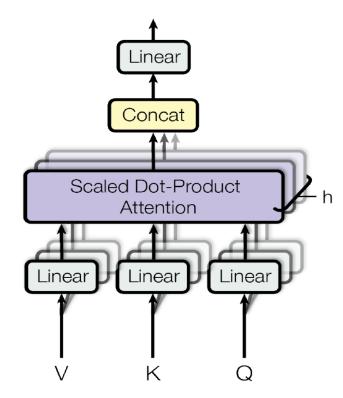
- □ Transformer概况
 - Transformer是Google团队在2017年提出的一种自然语言处理模型
 - Transformer模型使用了注意力机制,使得模型可以并行化训练,而 且能够拥有全局信息
 - 主要由编码器(Encoder)和解码器(Decoder)组成



• Ashish Vaswani, et al. "Attention is all you need". In NeurIPS, 2017.

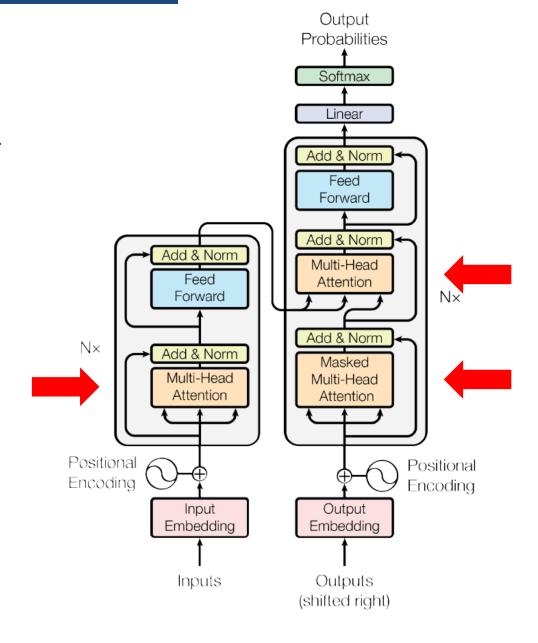
- □ Transformer概况
 - 注意力模块的基本形式
 - 多头注意力(Multi-head Attention): Transformer中,通过构造一系列并列的注意力模块,组成多头注意力机制。通过将输入映射到不同的子空间,有助于学习更加丰富的注意力表达。



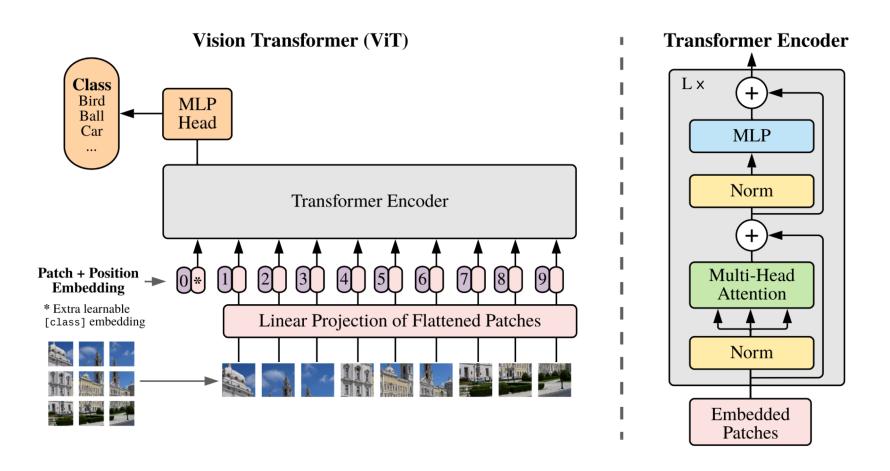


□ Transformer概况

- 编码器(encoder)和 解码器(decoder)主 要由注意力模块组成
- 编码器和解码器反复 堆叠(N=6),以便 更好地通过注意力机 制获取全局信息

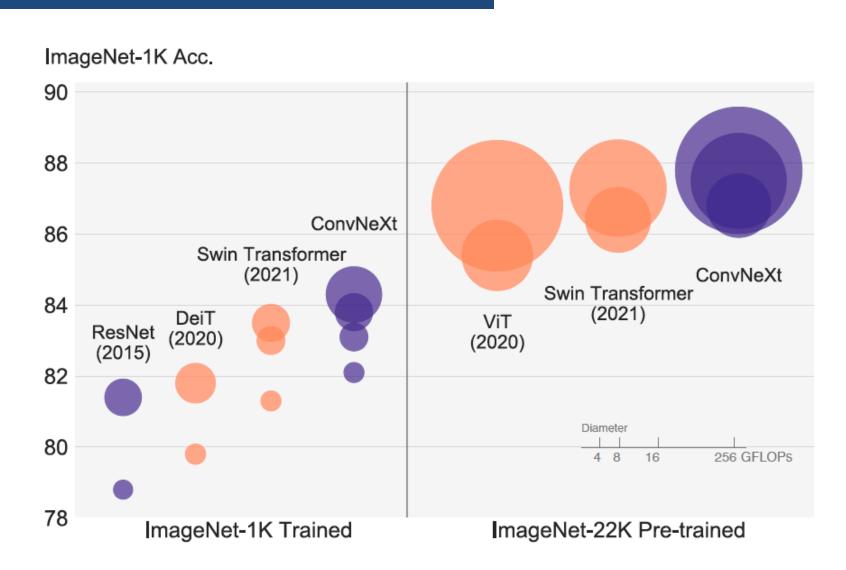


□ 视觉Transformer



Alexey Dosovitskiy, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale".
 In ICLR, 2021.

Transformer VS. CNN



• Z. Liu, et al. "A ConvNet for the 2020s". In CVPR, 2022.