

mailto:lihq@ustc.edu.cn
mailto:zhwg@ustc.edu.cn
mailto:lil1@ustc.edu.cn
mailto:eeyhu@ustc.edu.cn

3DE&R

O ZSG=thEERE

B G T RFEYARE

W AR ST XA LR

RNy

B T EHERTAE
O ZETREFIN=HEE
ETFINREBREMATT
ETHEN=4%RT
ETRZM=Z%RR
ET 210 R Mg = 4R R
ETIRERHBN=HFTT




AR A R

O SR A KR

B ERRAAT < R

L) !

[

Heteregeneous

+ (5e)

(hx, Ay, M)
.8

Homogeneous

Svy




AR A R

O B LFRTE
Ay
>
X
(P4 Ay (P4 Ay
- ! ]
t ).
/ > > (T’\—--‘\ > / >
X X v x p/ X
Translation Scaling Rotation Shear
x| |10 ¢||x x| |s, 0 0f|x| [x’| |[cos(B)-sin(B) Of|x x| |1 g, O] |x
V=01 t||y Y[=10 s, Of|y| [¥’|=]|sin(B) cos(B) Of|y Yi=lg, 1 0| |y
1 00 1}|1 1 0 01)|1 0 0 1|1 1 0 0 1f(1




AR A R

O fEHL AR =R

Image plane / sensor

6\‘5
&
Optical /
principal axis
\ 2
2 /a'mera
§ center
/
< 7 >
_ - [X]
a 0 ¢ O
- 0 Y aX/Z + ¢, n N
C = a = w
Y Z bY /Z + ¢, m
0 0 1 O
_ 41
HILAS R ER



AR A R

O #Fiwg (WERB|ISZE)

Y. 4

e
-
-
.
-
-
Chaiey

Pinhole /
camera center




AR AL R

O tBASNSRERE : LA FRFIE R LR TR — L E

R
Camera ’-\

coordinates

World
XW coordinates

. R —RT
Pc=R(Py - T)=RPy — RT 5 Pc = Pw

o' 1



AR A R

O EERGTR (GEINSFIASER)

K {R qu |
()1 l | W

33’ a 0 Cp R1 Rg R3 1 0 O —TX
y] =10 b Cy R4 R5 R5 0 1 0 —TY
w 0 0 1 R7 Rg Rg 0 0 1 _TZ
R
gt p=KR | —RT|Py M:KOT

—RT
1

TR

|

KE =A%,
REIEATFEM



A Y

HHIFRE

[0 DLT(Direct Linear Transform)& X
B SHE R b FIESNAY3DA P,

.
m, P
m;)r = mS_P%
p;=MP; = |m[|P; Bl p.
m. Yi = i il
2 ' m;PZ
=P FEEZ T
11
—P;r 0 QTEP;]_ 0 —0
o -PT 4P| T
) yl 2 m2
B XN =
-P] 0 zP]
0 _P-lr ylPI my
m;| =0 A[fR1SM
-P, 0 zyPL| LM
0 -Py wynPyl




HHYLARE

O BEMREBINEFINS

M= [KR | — KRT]

mTET
¥ M=[Bb], B=KR, b=-KRT |
T=-B'b
B +EK R
HTKA L=, RAIERZER, BB #{TQRY M AT15E]
FTK, REYE T

l%ﬁ?i%ﬂ@ﬁﬁ@@,E%ﬁ%ﬁﬂ%%ﬂﬁ%ﬁ%ﬁi%ﬁ
SEoI =

10



HHYLARE

O s/ hNERFIREE

N N
>l —pi* =) lp; — 7(K[R | —RT]P;)|?
i=1 i=1

MR 3 R AR A - IR AT

\/

11



3DE&R

O BEN=HEER A

B AR RAEHLARE

B SRR AR LA

m R

SRR
OETREFIN=HEE
ETZINERREMT
ETHRNZHERT
ETREMZHRT
ET iR Mg =R
ETREMNZHRR

12



VA" SV

O SRR (both cameras are identical (same intrinsic

parameters), and one 1s translated horizontally with respect to
the other)

P P
o ?

fT
LR — X[
lZE (Disparity)

13



VA% S V)

O S A ILEC
B NEER MR R A

14



Ry LA

OETF=

15



VA% S V)

O BT E3R4FIERYITHAC
B XHESN (EkdnHarrisB =)

16



VA% S V)

O BT E3R4FIERYITHAC
m 5IE &R (SIFT)

T
Jal s N
AEEL TN
o 71t e
RN — >
\ 1 S .
P N G B Y e 1
" - A e |y —
\‘ i " Se I il 4 ‘/
NS =17

Image gradients Keypoint descriptor

17



AR JLAA]

O i Am N ARIMRE T, —S R Rz BB JLTARK FR
(AP ARE—DIKFERIBER)

Camera 1 Camera 2

R, T

18



AR JLAA]

O i Am N ARIMRE T, —S R Rz BB JLTARK FR
(AP ARE—DIKFERIBER)

19



AR JLAA]

O #E AN AEMRE T, —XEEC BRI JLATAR X &
B Epipolar plane

B Epipolar line
B Epipoles

Epipolar plane

Camera 2
Camera 1

20



2% #FIE (Image Rectification )

O MEEMRAKREAAKE, BB TR, HERIRIHITIER
ZETWH, FEMKEEGNTRI—/KESEBHBEFRIT

O #HiEfe, AKEGE ENNNLAMNTEEGHEESESKFEEMmEL, A
i A &) (L AE DL AL

24



)

ETEIMA;

O ETFIRREM T

width

Feature Extraction Cost Cost Aggregation Disparity Estimate
Volume

Rectified Stereo Pair

J(0) = |d = fo(vi,va)[?
f(v1,v2) = c(g(v1),9(v2))

J.-R. Chang, Y.-S. Chen, Pyramid stereo matching network., in: Proceedings of the

IEEE/CVF Computer Vision and Pattern Recognition, 2018. -



3DE&R

O ZSG=thEERE

B G T RFEYARE

W AR ST XA LR

RNy

B T EHERTAE
O ZETREFIN=HEE
ETFINREBREMATT
ETHEN=4%RT
ETRZM=Z%RR
ET 210 R Mg = 4R R
ETIRERHBN=HFTT

26



8 14 (Homography)

O BNMTR: SR = h(p), BEP1, P P3E—F
Bz, NTERNSR(p), h(py), h(ps) sk

\\
\\ﬁ
//ﬁ

| —

B 3R FRAI R A
p' = Hp
B 3 x3FEFEHARENIERE, PBERE
H4EFRE: WEZI'p=0, X p=H'p, NAHHE )p =0, EIZF
e PANE L

27



B 7 M4 (Homography)

O il neds, BREFERNE

)

Camera 1

Camera 2

tg
- < 8
— ]
I
A
[
=)
= N

—K|Y Az[y’
Z 1

oN N

28



B v ¥ (Homography)

O il neds, BREFERNE

[ X ]

v Y
Myl =KI o] =k |v
AR

&
—

<L R
3

I

Ial

=)

=)
= N

el

29



8 7t (Homography

O FEIFEREFERNE

Camera
center.

AN

~

-
AY

planar surface

C2

30



E [ 1% (Homography

O MFZ06: ©SEGHE
B (XNEFEGLEDN SN R B EIRTERBHE

nnn
mnn
mm

BN AR AR

31



8 7 M4 (Homography)
0 MAEH: +BEEHHE

B DILTE %

Ah=0
v AA2Nx9 %, hAIX1EE
v &/ME||ARW]?, RINEBAARNSR /NS
ATARY B /MFEEXT R A FE R 2
B RANSAC

Y

(d) (e)

FEX AV

=5

32



3DE&R

O ZSG=thEERE

B G T RFEYARE

W AR ST XA LR

RNy

B S EHERTAE
O ZETREFIN=HEE
ETFINREBREMATT
ETHEN=4%RT
ETRZM=Z%RR
ET 210 R Mg = 4R R
ETIRERHBN=HFTT

33



ot

1 25 #4 (Structure from

(b)
{i’\ Photo Tourism
e 8 Exploring photo collections in 3D

34



1% S HE W 25 45) (Structure from Motion)

O (8] E X
B REAEFENDIAERZDEP;, BMANNERNMA
m WEAA, HENSHAKD, RO, TO)
B ENME, SPEEEpY

B SFMESEXABRE—RIIBXIRXRM2DAPY, WEHXT A
3DEP;, RMEHEHSHKD,RD, TO)
O 534h

B ZHENASKOEM, UE—NMEN ST R LR
B ASIMERE, WRIBEHT

ONM > 3N +6(M —1) —1

B R ARESAREMBATRNER, NWEEEZAES

35



1% S HE W 25 45) (Structure from Motion)

O F¢3RFZE A (Bundle Adjustment)

B sMURFORE

36



1% S HE W 25 45) (Structure from Motion)

O F¢3RFZE A (Bundle Adjustment)

2

M N
BB
> 2

J i

pl 7r(Ku) RO | — R(J’)T(j)]Pz-)

B EZMiinlE, EEERMN
B =1t (batch optimization)

B Ak (Progressive optimization)
v RSN S xZHMEKEHITER
v ERERIETRIAEL

37



1= SNHEWT £545) (Structure from Motion)

O EFE I K SN FHERFER T

B SuperPoint

38



15 S HE T 25 44 (Structure from Motion)
O ZEFF S /YR 21 S EFIER R

(a) Interest Point Pre-Training (b) Interest Point Self-Labeling

Labeled Interest
Point Images

" Base Detector
BN Train S gﬂggﬂ

Unlabeled Image Pseudo-Ground

Truth Interest
Points
\‘ Homographlc »
Base Detector Adaptation

(c) Joint Training

Interest Point Decoder w

H Conv

'@
@
§
.

* D. DeTone, T. Malisiewicz, A. Rabinovich, SuperPoint: Self-supervised interest point detection and description. In CVPRW, 2018_)

JIJ



1% S HE W 25 45) (Structure from Motion)

O EFF I8 18N FHEFIER T

Quads / Tris Cubes Stars MagicPoint FAST Harris Shi
Train MagicPoint

Lines Checkerboards Quad Grids ™% ’ ﬂ .—} B

o
1

Homographic Adaptation

Sample Random Warp Apply Get Point Unwarp
Homography Images Detector Response  Heatmaps

o i = - Interest Point
H] — —pﬁ ; - Aggregate
A \ / A Uﬂﬂﬂ, _E_E_A \ Heatmap Superset

A
g - BN 7 o SRR SEoR N NI
"N g e n- i

Unlabeled Image

Hyn B

O
AN
=
=
L ane
!
oo
i

D. DeTone, T. Malisiewicz, A. Rabinovich, SuperPoint: Self-supervised interest point detection and description. In CVPRW, 2018.

A0
U



15 S HE T 25 44 (Structure from Motion)
O ETF WX < L

. local fl\] Fﬁ
ggﬁge features Graph Neural Network b
Sh @
- N
o oS g
® k "5_
= 3
e c
° & w
‘. x
° [T}
] ]
A strong| | &
matches
Detector & Descriptor SuperGIue
Deep Front-End Deep Middle-End Matcher
Attentional Graph Neural Network Optimal Matching Layer
fi Iotcal Attentional Aggregation matching Sinkhorn Algorithm
T - N | (s N N partial
d A visual descriptor Self Cross L f.A- score matrix mw assignment
il position @ t — nonnahzatlon r-—v—\
P; Keypoint . Sr' R z .
ptB Encoder W s A \' .
B I | n
@’ #/ L t dustb va |
ustbin N+1
\ / score < =1

P.-E. Sarlin, D. DeTone, T. Malisiewicz, A. Rabinovich, SuperGlue: Learning Feature Matching with Graph Neural Networks. In CVPR, 2020. 41



15 EhHE IR 25 44

42



1& o) HE 7 25 #4) (Structure from Motion

i
a
K
AR Jﬂ—
K fp = BCR
i GRAITIEENE
m =

N. Snavely, S. M. Seitz, R. SzeliskiPhoto, Tourism: Exploring Photo Collections in 3D. In SIGGRAPH, 2006. 43



3DE&R

O ZSG=thEERE

B G T RFEYARE

W AR ST XA LR

RNy

B T EHERTAE
O ZETREFIN=HEE
ETZEINBRREMIT
ETHEN=4%RT
ETRZM=Z%RR
ET 210 R Mg = 4R R
ETIRERHBN=HFTT

44



BEAREMT

BPEREZZE (So-called prior)

%,18(Shading): FREFAEAESIEMNZTENTEEL

ST R K. DEXREFTL

FA S A04H B 2 5

B K51EM(Atmospheric perspective): K LR AVELST AR, EE]
GRRIRRERE BIE MM TR . XTEERV) . 155

m H{AE

]
R

45



Velodyne HDL-64E Laserscanner
Point Gray Flea 2 ‘

:.a ! !
o
- \-

Campus Person

KITTI dataset

46



Encoder Decoder

Upsample
H

W

Non-linearity

W
H
|
Non-linearity
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