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Active Contours Without Edges
Tony F. Chan, Member, IEEE,and Luminita A. Vese

Abstract—In this paper, we propose a new model for active con-
tours to detect objects in a given image, based on techniques of
curve evolution, Mumford–Shah functional for segmentation and
level sets. Our model can detect objects whose boundaries are not
necessarily defined by gradient. We minimize an energy which can
be seen as a particular case of the minimal partition problem. In
the level set formulation, the problem becomes a “mean-curvature
flow”-like evolving the active contour, which will stop on the de-
sired boundary. However, the stopping term does not depend on
the gradient of the image, as in the classical active contour models,
but is instead related to a particular segmentation of the image. We
will give a numerical algorithm using finite differences. Finally, we
will present various experimental results and in particular some
examples for which the classical snakes methods based on the gra-
dient are not applicable. Also, the initial curve can be anywhere in
the image, and interior contours are automatically detected.

Index Terms—Active contours, curvature, energy minimization,
finite differences, level sets, partial differential equations, segmen-
tation.

I. INTRODUCTION

T HE BASIC idea in active contour models or snakes is to
evolve a curve, subject to constraints from a given image

, in order to detect objects in that image. For instance, starting
with a curve around the object to be detected, the curve moves
toward its interior normal and has to stop on the boundary of the
object.

Let be a bounded open subset of, with its boundary.
Let be a given image, and be a
parameterized curve.

In the classical snakes and active contour models (see [9], [3],
[13], [4]), an edge-detector is used, depending on the gradient
of the image , to stop the evolving curve on the boundary of
the desired object. We briefly recall these models next.

The snake model [9] is: , where

(1)

Here, , and are positive parameters. The first two terms
control the smoothness of the contour (the internal energy),
while the third term attracts the contour toward the object in
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the image (the external energy). Observe that, by minimizing
the energy (1), we are trying to locate the curve at the points
of maxima , acting as an edge-detector, while keeping a
smoothness in the curve (object boundary).

A general edge-detector can be defined by a positive and de-
creasing function , depending on the gradient of the image,
such that

For instance

where , a smoother version of , is the convo-
lution of the image with the Gaussian

. The function is positive in
homogeneous regions, and zero at the edges.

In problems of curve evolution, the level set method and in
particular the motion by mean curvature of Osher and Sethian
[19] have been used extensively, because it allows for cusps,
corners, and automatic topological changes. Moreover, the dis-
cretization of the problem is made on a fixed rectangular grid.
The curve is represented implicitly via a Lipschitz function,
by , and the evolution of the curve is
given by the zero-level curve at timeof the function .
Evolving the curve in normal direction with speed amounts
to solve the differential equation [19]

where the set defines the initial contour.
A particular case is the motion by mean curvature, when
div is the curvature of the level-curve of

passing through . The equation becomes

div

A geometric active contour model based on the mean curva-
ture motion is given by the following evolution equation [3]:

div

in

in

(2)

where
edge-function with ;
is constant;
initial level set function.
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Its zero level curve moves in the normal direction with speed
and therefore stops on the desired

boundary, where vanishes. The constantis a correction term
chosen so that the quantitydiv
remains always positive. This constant may be interpreted as a
force pushing the curve toward the object, when the curvature
becomes null or negative. Also, is a constraint on the area
inside the curve, increasing the propagation speed.

Two other active contour models based on level sets were
proposed in [13], again using the image gradient to stop the
curve. The first one is

in

where is a constant, and and are the maximum and
minimum values of the magnitude of the image gradient

. Again, the speed of the evolving curve becomes zero on the
points with highest gradients, and therefore the curve stops on
the desired boundary, defined by strong gradients. The second
model [13] is similar to the geometric model [3], with .
Other related works are [14] and [15].

The geodesic model [4] is

(3)

This is a problem of geodesic computation in a Riemannian
space, according to a metric induced by the image. Solving
the minimization problem (3) consists in finding the path of
minimal new length in that metric. A minimizer will be ob-
tained when vanishes, i.e., when the curve
is on the boundary of the object. The geodesic active contour
model (3) from [4] also has a level set formulation

div

in

in

(4)

Because all these classical snakes and active contour models
rely on the edge-function, depending on the image gradient

, to stop the curve evolution, these models can detect only
objects with edges defined by gradient. In practice, the dis-
crete gradients are bounded and then the stopping function
is never zero on the edges, and the curve may pass through
the boundary, especially for the models in [3], [13]–[15]. If the
image is very noisy, then the isotropic smoothing Gaussian
has to be strong, which will smooth the edges too. In this paper,
we propose a different active contour model, without a stopping
edge-function, i.e. a model which is not based on the gradient
of the image for the stopping process. The stopping term is
based on Mumford–Shah segmentation techniques [18]. In this
way, we obtain a model which can detect contours both with or
without gradient, for instance objects with very smooth bound-
aries or even with discontinuous boundaries (for a discussion on

different types of contours, we refer the reader to [8]). In addi-
tion, our model has a level set formulation, interior contours are
automatically detected, and the initial curve can be anywhere in
the image.

The outline of the paper is as follows. In the next section we
introduce our model as an energy minimization and discuss the
relationship with the Mumford–Shah functional for segmenta-
tion. Also, we formulate the model in terms of level set functions
and compute the associated Euler–Lagrange equations. In Sec-
tion III we present an iterative algorithm for solving the problem
and its discretization. In Section IV we validate our model by
various numerical results on synthetic and real images, showing
the advantages of our model described before, and we end the
paper by a brief concluding section.

Other related works are [29], [10], [26], and [24] on active
contours and segmentation, [28] and [11] on shape reconstruc-
tion from unorganized points, and finally the recent works [20]
and [21], where a probability based geodesic active region
model combined with classical gradient based active contour
techniques is proposed.

II. DESCRIPTION OF THEMODEL

Let us define the evolving curve in , as the boundary of an
open subset of (i.e. , and ). In what follows,
inside denotes the region , andoutside denotes the
region .

Our method is the minimization of an energy based-segmen-
tation. Let us first explain the basic idea of the model in a simple
case. Assume that the imageis formed by two regions of ap-
proximatively piecewise-constant intensities, of distinct values

and . Assume further that the object to be detected is repre-
sented by the region with the value. Let denote its boundary
by . Then we have inside the object [orinside( )],
and outside the object [oroutside( )]. Now let us
consider the following “fitting” term:

where is any other variable curve, and the constants, ,
depending on , are the averages of inside and respec-
tively outside . In this simple case, it is obvious that , the
boundary of the object, is the minimizer of the fitting term

This can be seen easily. For instance, if the curveis outside
the object, then and . If the curve is
inside the object, then but . If the curve

is both inside and outside the object, then and
. Finally, the fitting energy is minimized if ,

i.e., if the curve is on the boundary of the object. These basic
remarks are illustrated in Fig. 1.

In our active contour model we will minimize the above fit-
ting term and we will add some regularizing terms, like the
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Fig. 1. Consider all possible cases in the position of the curve. The fitting term
is minimized only in the case when the curve is on the boundary of the object.

length of the curve , and (or) the area of the region inside.
Therefore, we introduce the energy functional , de-
fined by

Length Area inside

where , , are fixed parameters. In almost
all our numerical calculations (see further), we fix
and .

Therefore, we consider the minimization problem:

Remark 1: In our model, the term Length could be
re-written in a more general way asLength , with .
If we consider the case of an arbitrary dimension (i.e.,

), then can have the following values: for
all , or . For the last expression, we use
the isoperimetric inequality [7], which says in some sense that
Length is “comparable” with Areainside :

Area inside Length

where is a constant depending only on.

A. Relation with the Mumford–Shah Functional

The Mumford–Shah functional for segmentation is [18]

Length

Fig. 2. CurveC = f(x; y): �(x; y) =g propagating in normal direction.

where is a given image, and are positive param-
eters. The solution imageobtained by minimizing this func-
tional is formed by smooth regions and with sharp bound-
aries, denoted here by.

A reduced form of this problem is simply the restriction of
to piecewise constant functions, i.e., constant on

each connected componentof . Therefore, as it was also
pointed out by D. Mumford and J. Shah [18], average

on each connected component. The reduced case is called the
minimal partition problem.

Our active contour model with and is
a particular case of the minimal partition problem, in which we
look for the best approximation of , as a function taking
only two values, namely

average inside

average outside
(5)

and with one edge , represented by the snake or the active
contour.

This particular case of the minimal partition problem can be
formulated and solved using the level set method [19]. This is
presented in the next section.

B. Level Set Formulation of the Model

In the level set method [19], is represented by the zero
level set of a Lipschitz function , such that

inside

outside

Recall that is open, and . We illustrate in Fig. 2
the above assumptions and notations on the level set function

, defining the evolving curve . For more details, we refer the
reader to [19].

For the level set formulation of our variational active contour
model, we replace the unknown variableby the unknown vari-
able , and we follow [27].

Using the Heaviside function , and the one-dimensional
Dirac measure , and defined, respectively, by

if

if
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(in the sense of distributions), we express the terms in the energy
in the following way (see also [7]):

Length

Area

and

Then, the energy can be written as

We note that, as defined in (5), solution of our model
as a particular case of the Mumford–Shah minimal partition
problem, can simply be written using the level set formulation
as

Keeping fixed and minimizing the energy
with respect to the constants and , it is easy to express
these constants function ofby

(6)

if (i.e. if the curve has a nonempty
interior in ), and

(7)

if (i.e. if the curve has a
nonempty exterior in ). For the corresponding “degenerate”

cases, there are no constrains on the values ofand . Then,
and are in fact given by

average in

average in

Remark 2: By the previous formulas, we can see that the en-
ergy can be written only function of , which is the charac-
teristic function of the set . Let us denote it by . Then we
can rewrite the energy in the new form

Therefore, we can consider the new minimization problem

a e (8)

among characteristic functions of sets with finite perimeter in
. Here, a e means almost everywhere with respect to the

Lebesgue measure.
We expect, of course, to have existence of minimizers of the

energy , due to several general results: our model
is a particular case of the minimal partition problem, for which
the existence has been proved in [18] (assuming thatis con-
tinuous on ), and also in [16] and [17], for more general data

. Also, the existence for the general Mumford–Shah segmen-
tation problem has been proved in [5]. On the other hand, it can
be easily shown, by the lower-semicontinuity of the total varia-
tion and classical arguments of calculus of vari-
ations, that our minimization problem (8) has minimizers (this
can be an alternative proof of the existence). In this paper, the
level set function is used only to represent the curve and it
has many numerical advantages, but the problem could also be
formulated and solved only in terms of characteristic functions.

In order to compute the associated Euler–Lagrange equation
for the unknown function , we consider slightly regularized
versions of the functions and , denoted here by and ,
as . Let beany regularization of , and

. We will give further examples of such approximations. Let
us denote by the associated regularized functional, defined
by
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Fig. 3. Two different regularizations of the (top) heaviside function and
(bottom) delta function� .

Keeping and fixed, and minimizing with respect to
, we deduce the associated Euler–Lagrange equation for.

Parameterizing the descent direction by an artificial time ,
the equation in (with defining
the initial contour) is

div

in

in

on (9)

where denotes the exterior normal to the boundary, and
denotes the normal derivative ofat the boundary.

III. N UMERICAL APPROXIMATION OF THEMODEL

First possible regularization of by functions, as pro-
posed in [27], is

if

if

if

Fig. 4. Detection of different objects from a noisy image, with various
shapes and with an interior contour. Left:u and the contour. Right:
the piecewise-constant approximation ofu . Size = 100 � 100,
� (x; y) = � (x� 50:5) + (y � 50:5) + 48:5, � = 0:1 � 255 , no
reinitialization, cpu= 4:60 s.

In this paper, we introduce and use in our experiments the fol-
lowing regularization of

These distinct approximations and regularizations of the func-
tions and (taking ) are presented in Fig. 3. As

, both approximations converge to and . A differ-
ence is that has a small support, the interval , while

is different of zero everywhere. Because our energy is non-
convex (allowing therefore many local minima), the solution
may depend on the initial curve. With and , the al-
gorithm sometimes computes a local minimizer of the energy,
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Fig. 5. Detection of three blurred objects of distinct intensities. Size= 100�
100, � (x; y) = � (x� 15) + (y � 60) + 12, � = 0:01 � 255 , no
reinitialization, cpu= 48:67 s.

Fig. 6. Detection of lines and curves not necessarily closed. Size= 64� 64,
� (x; y) = � (x� 32:5) + (y � 32:5) + 30, � = 0:02 � 255 , no
reinitialization, cpu= 2:88 s.

while with and , the algorithm has the tendency to com-
pute a global minimizer. One of the reasons is that the Euler–La-
grange equation for acts only locally, on a few level curves

Fig. 7. Grouping based on Kanizsa’s “proximity rule.” Size: 64� 64,
� (x; y) = � (x� 32:5) + (y � 32:5) + 30, � = 2 � 255 , no
reinitialization, cpu= 5:76 s.

Fig. 8. Grouping based on chromatic identity. Size: 64� 64, � (x; y) =
� (x� 32:5) + (y � 32:5) +30:5,� = 2 �255 , no reinitialization, cpu
= 5:76 s.

around using and ; but using and
, the equation acts on all level curves. In this way, in practice,

we can obtain a global minimizer, independently of the position
of the initial curve; moreover, this allows to automatically de-
tect interior contours (see Section IV). We mention that, in order
to extend the evolution to all level sets of, another possibility
is to replace by (see [27]). In our paper, we work
with , to remain close to the initial minimization problem.
The problem of extending the evolution to all level sets of
was solved here using the approximation of , which is
different of zero everywhere.

To discretize the equation in, we use a finite differences
implicit scheme. We recall first the usual notations: letbe the
space step, be the time step, and be the
grid points, for . Let be an
approximation of , with , . The finite
differences are

The algorithm is as follows (we essentially adopt the method
from [23] for the discretization of the divergence operator and
the iterative algorithm from [1]): knowing , we first compute

and using (6) and (7), respectively. Then, we

ZHOU
高亮
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Fig. 9. Object with smooth contour. Top: results using our model without edge-function. Bottom: results using the classical model (2) with edge-function.

compute by the following discretization and linearization
of (9) in

This linear system is solved by an iterative method, and for more
details, werefer the reader to [1].

When working with level sets and Dirac delta functions, a
standard procedure is to reinitialize to the signed distance
function to its zero-level curve, as in [25] and [27]. This pre-
vents the level set function to become too flat, or it can be seen
as a rescaling and regularization. For our algorithm, the reini-
tialization is optional. On the other hand, it should not be too
strong, because, as it was remarked by Fedkiw, it prevents in-
terior contours from growing. Only for a few numerical results
we have applied the reinitialization, solving the following evo-
lution equation [25]:

sign
(10)

where is our solution at time . Then the new
will be , such that is obtained at the steady state of (10).
The solution of (10) will have the same zero-level set
as and away from this set, will converge to 1. To
discretize the equation (10), we use the scheme proposed in [22]
and [25].

Finally, the principal steps of the algorithm are:

• Initialize by , .
• Compute and by (6) and (7).
• Solve the PDE in from (9), to obtain .
• Reinitialize locally to the signed distance function to the

curve (this step is optional).
• Check whether the solution is stationary. If not,

and repeat.

We note that the use of a time-dependent PDE foris not
crucial. The stationary problem obtained directly from the mini-
mization problem could also be solved numerically, using a sim-
ilar finite differences scheme.

IV. EXPERIMENTAL RESULTS

We conclude this paper by presenting numerical results
using our model on various synthetic and real images, with
different types of contours and shapes. We show the active
contour evolving in the original image , and the associated
piecewise-constant approximation of (given by the averages

and ). In our numerical experiments, we generally choose
the parameters as follows: , ,
(the step space), (the time step). We only use the
approximations and of the Heaviside and Dirac delta
functions ( ), in order to automatically detect interior
contours, and to insure the computation of a global minimizer.
Only the length parameter, which has a scaling role, is not
the same in all experiments. If we have to detect all or as many
objects as possible and of any size, thenshould be small.
If we have to detect only larger objects (for example objects
formed by grouping), and to not detect smaller objects (like
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Fig. 10. Detection of a simulated minefield, with contour without gradient.
Size= 100� 100, � (x; y) = � (x� 50:5) + (y � 50:5) + 47, � =
0:2 � 255 , no reinitialization, cpu= 144:81 s.

points, due to the noise), thenhas to be larger. We will give
the exact value of each time, together with the initial level set
function , and the cpu time, in seconds, of our calculations,
performed on a 140 MHz Sun Ultra 1 with 256 MB of RAM.

In Fig. 4, we show how our model works on a noisy synthetic
image, with various shapes and an interior contour, which is au-
tomatically detected, without considering a second initial curve.
Due to the level set implementation, the model allows automat-
ical change of topology.

In Fig. 5, we show that our model can detect different objects
of different intensities, and with blurred boundaries. Again, the
interior contour of the torus is automatically detected. This is
also due to the fact that the velocity has a global dependence, and
the curve is automatically attracted toward the objects. In this
example we also show that the initial curve does not necessarily
surround the objects.

In Fig. 6, we show how we can detect lines and curves (not
necessarily closed) in a noisy image. The final level set function
is zero on the curves and negative outside the curves.

Fig. 11. Europe night-lights. Size= 118 � 113, � (x; y) =
� (x� 59:) + (y � 57:) + 55, � = 0:05 � 255 , five iterations
of reinitialization, cpu= 32:74 s.

In the next examples (Figs. 7 and 8) we consider images with
“contours without gradient” or “cognitive contours” (see [8]).
We also illustrate here the role of the length term as a scale
parameter: if is small, then also smaller objects will be de-
tected; if is larger, then only larger objects are detected, or ob-
jects formed by grouping. In Fig. 7, we show that our algorithm
can detect objects defined by grouping according to Kanizsa’s
“proximity rule.” In Fig. 8 we show how the grouping is based
on the chromatic resemblance or identity, among objects of the
same shape.

We next consider an image with very smooth contours. In
Fig. 9 top, we show results obtained using our model, while
in Fig. 9 bottom, we show the results obtained with a classical
active contour model based on the edge-function [here
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Fig. 12. Spiral from an art picture. Size= 234� 191, � = 0:0000033 � 255 , five iterations of reinitialization, cpu= 108:85 s.

the geometric model (2)], by which the curve cannot detect the
smooth boundary.

In Fig. 10, we validate our model on a very different problem:
to detect features in spatial point processes in the presence of
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Fig. 13. Detection of the contours of a plane from a noisy image. Size= 87� 53,�t = 0:01,� = 0:17 � 255 , � (x; y) = � (x� 45) + (y � 39) +6,
one iteration of reinitialization, cpu= 2:87 s.

substantial cluster. One application is the detection of mine-
fields using reconnaissance aircraft images that identify many
objects that are not mines. These problems are usually solved
using statistical methods (see [6] and [2]). By this application,
we show again how our model can be used to detect objects
or features with contours without gradient. This is not possible
using classical snakes or active contours based on the gradient.
A similar application is presented in Fig. 11, where the white
points are Europe night-lights.

We also show examples on real noisy images, with different
types of contours or shapes, illustrating all the advantages of
our model: the ability of detecting smooth boundaries, scale
adaptivity, automatic change of topology, and robustness with
respect to noise.

In Fig. 12, we consider an art picture from theLos Angeles
Timesby Brian Forrest. Here, from Remark 1, Section II
[we have Length in the energy, with instead of

Fig. 14. Examples of images for which the averages “inside” and “outside”
the objects are the same.

]. The initial curve is the boundary of the image. After a
time, a curve in the middle of the image appears and expands
until merges with the initial evolving curve.
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Fig. 15. Grouping based on shape identity. In our model, we replacedu from
Fig. 14 top left, by the curvature of the level curves ofu (Fig. 14 top right). Size
= 64�64,� = 0:05 � 255 , � (x; y) = � (x� 32:5) + (y � 32:5) +
30:5, 5 iterations of reinitialization, cpu= 10:20 s.

Fig. 16. Grouping based on orientation identity. In our model, we replacedu
from Fig. 14 bottom left, by the orientation of the normal to the level curves
of u (Fig. 14 bottom right). Size:64 � 64, � = 0:025 � 255 , � = 0:02 �
255 , � (x; y) = � (x� 32:5) + (y � 32:5) + 30, five iterations of
reinitialization, cpu= 10:25 s.

Finally, in Fig. 13, the algorithm detects the contours of a
plane from a real noisy image.

Of course that our model has its limitations. For instance, it
will be interesting to extend the model to the general case of the
Mumford–Shah functional.

On the other hand, there are objects which cannot be de-
tected using the intensity average only. For instance, we show
in Fig. 14 two such examples, together with the averages inside
and outside the objects, which are practically the same (left and
middle). One way to overcome this difficulty, would be to use
other informations from the initial image , like the curvature
(see Fig. 14 top right), or the orientation of level sets (see Fig. 14
bottom right). In this framework, we refer the reader to [12].

For the results from Figs. 15 and 16, we replaced in our
model by curvature div , and by
orientation respectively (the angle
of the normal to the level curves). Other discriminants may be
considered.

V. CONCLUDING REMARKS AND DISCUSSIONS

In this paper, we proposed an active contour model based
on Mumford–Shah segmentation techniques and the level set
method. Our model is not based on an edge-function to stop the
evolving curve on the desired boundary. Also, we do not need to

smooth the initial image, even if it is very noisy and in this way,
the locations of boundaries are very well detected and preserved.
By our model, we can detect objects whose boundaries are not
necessarily defined by gradient or with very smooth boundaries,
for which the classical active contour models are not applicable.
Finally, we can automatically detect interior contours starting
with only one initial curve. The position of the initial curve can
be anywhere in the image, and it does not necessarily surround
the objects to be detected. We validated our model by various
numerical results.
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